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Abstract

Walking is an easy task for most humans and animals. Two characteristics which make it easy are
the inherent robustness (tolerance to variation) of the walking problem and the natural dynamics
of the walking mechanism. In this thesis we show how understanding and exploiting these two
characteristics can aid in the control of bipedal robots. Inherent robustness allows for the use of
simple, low impedance controllers. Natural dynamics reduces the requirements of the controller.

We present a series of simple physical models of bipedal walking. The insight gained from
these models is used in the development of three planar (motion only in the sagittal plane) control
algorithms. The first uses simple strategies to control the robot to walk. The second exploits the
natural dynamics of a kneecap, compliant ankle, and passive swing-leg. The third achieves fast
swing of the swing-leg in order to enable the robot to walk quickly (1.25ms ). These algorithms are
implemented on Spring Flamingo, a planar bipedal walking robot, which was designed and built for
this thesis. Using these algorithms, the robot can stand and balance, start and stop walking, walk
at a range of speeds, and traverse slopes and rolling terrain.

Three-dimensional walking on flat ground is implemented and tested in simulation. The dynamics
of the sagittal plane are sufficiently decoupled from the dynamics of the frontal and transverse planes
such that control of each can be treated separately. We achieve three-dimensional walking by adding
lateral balance to the planar algorithms. Tests of this approach on a real three-dimensional robot
will lead to a more complete understanding of the control of bipedal walking in robots and humans.

Thesis Supervisor: Gill A. Pratt
Title: Assistant Professor of Electrical Engineering and Computer Science, MIT
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Chapter 1

Introduction

1.1 Thesis

Building and controlling bipedal walking robots can help us to understand how humans walk. The
symbiosis between controlling robots and understanding humans can be achieved by using a robot
to test theories on how humans walk, to further understand the biomechanics of both robots and
humans, to discover limitations to walking in both humans and robots, and to suggest testable
hypotheses on how humans control walking.

Testing Theories

Robots can be used to test theories on how humans walk. Since we can access the internals of the
robot more easily than the internals of a human, testing theories on a robot is fairly easy, once the
robot is built and working. In this thesis, we use strategies for standing and balancing that are
similar to those discovered by researchers in biomechanics. We modify the center of pressure on the
foot to balance, which is similar to the “ankle strategy” used by humans [Kuo & Zajac (1993b,a)],
thus testing the usefulness of that strategy. As more biomechanical hypotheses on human walking
are proposed, robots may be a useful tool for testing them.

Understanding Biomechanics

An understanding of the biomechanics of walking is important for building and controlling bipedal
robots. In the process of controlling the robot in this thesis, we analyzed simple models of walking.
Since humans must obey the same laws of physics as a robot, understanding the physics of one helps
us understand the physics of the other.

Understanding Limitations in Walking

Some of the same elements that limit speed, efficiency, and grace in a human probably limit robots
as well. By building robots which have good performance, we start to understand the limiting
factors of performance. If these limits apply to human walking, then we start to understand human
walking more fully. In this thesis, we examine the limits to maximum walking speed and find that
the minimum swing time of the swing-leg is a major limiting factor in walking, both for humans and
robots.

Suggesting Biomechanical Experiments

Good strategies for controlling a bipedal walking robot may also be good strategies for controlling
human walking. In this thesis, we use a number of strategies for controlling height, pitch, speed,
support transitions, and the swing-leg. These strategies may be good candidate hypotheses for how
humans control walking and could be tested in a biomechanics laboratory.
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Figure 1-1: Spring Flamingo taking a stroll with the author looking on. Lights trace out the motion
of the top and middle of the robot’s body, the hip, knee, and ankle joints, and the toe and heel of
the feet. Photo by Peter Menzel, Copyright 1999. Reproduced with permission.

1.2 Synopsis

This thesis presents three algorithms for controlling a planar bipedal walking robot called Spring
Flamingo (Figure 1-1) and one algorithm for controlling a 3D bipedal walking simulation. The
algorithms are all based on simple physical models of walking and employ simple control strategies.
For instance, the control strategies for the first planar algorithm are

• Maintain a constant stance leg length by pushing up until hitting the knee cap.
• Maintain a constant level pitch using a virtual spring-damper mechanism with constant set

point.
• Transition from double support to single support when the body’s forward position becomes

further than a preset distance from the rear foot or closer than a preset distance from the front
foot.
• Transition from single support to double support when the body’s forward position becomes

further than a preset distance from the support foot.
• Swing the non-stance leg such that the foot will be placed a desired stride length away from

the support foot.
• Increase the nominal stride length as the robot walks faster.
• Delay transition to double support if the robot is walking too slowly. Conversely, initiate

transition to double support sooner if the robot is walking too quickly.
• Maintain the center of pressure of the support foot approximately below the center of mass,

moving it forward if walking too quickly or backward if walking too slowly.
• During double support shift the load toward the back leg if walking too slowly or toward the

front leg if walking too quickly.
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These strategies are implemented with simple control tools including Virtual Model Control
[Pratt (1995)], and linear control laws. The parameters of these equations are tuned manually.
Since they have a clear physical interpretation, tuning is straightforward. A state machine is used
to cycle in and out those strategies which are applicable to different phases of the walking cycle.

In the second algorithm, the natural dynamics of the walking mechanism are exploited. The
natural mechanisms considered are a knee-cap joint limit which makes height control easy (already
exploited in the first algorithm), a compliant ankle which naturally moves the center of pressure on
the foot forward as the robot moves forward, and a passively swinging swing-leg.

Fast walking is achieved in the third algorithm by focusing on swinging the swing-leg as fast
as possible. This requires actively driving the swing-leg. To do so, we use feed-forward inverse
dynamics (computed torque) along with feedback to make the hip track a minimum jerk trajectory
[Flash & Hogan (1985)] during swing. The knee remains passive during the first half of swing and
tracks a spline trajectory during the second half of swing. Using this method we achieved walking
speeds up to 1.25ms which, while a moderate speed for a human, is quite fast for contemporary
bipedal robots.

The 3D algorithm builds on the planar algorithms with lateral balance controlled with foot
placement and ankle torque. This algorithm is verified in simulation. The algorithm is currently
being adapted for a real biped, called M2.

This work shows that simple control algorithms can successfully control bipedal walking robots.
The robots walk smoothly and efficiently and appear natural. The algorithms that exploit natural
dynamics show how natural mechanisms can be used to simplify the algorithm while enhancing
efficiency. The fast walking algorithm verifies that fast walking can be achieved if swing time can
be reduced through active control. The 3D algorithm verifies that these techniques are applicable
not just to planar walkers but also to a 3D robot.

1.3 Motivation

There are over 20 billion bipedal walking machines in the world today, yet no one fully understands
how they work. Biologists have gained knowledge of the mechanics of walking and muscle firing
patterns. However, researchers are only starting to understand the control of bipedal animals.
Recently, engineers have begun designing, building, and controlling bipedal walking robots. These
machines and their control have enormous potential for helping to test control strategies that animals
might employ and for suggesting new experiments.

While the main character of this thesis is a bipedal robot called Spring Flamingo, the main
theme is to further the understanding of bipedal walking, not just to maximize the performance of
a single robot. We believe that not only is understanding bipedal walking as important a goal as
building bipedal walking machines, but that emphasizing understanding will more quickly lead to
maximizing performance and producing useful walking machines in the future.

Understanding bipedal walking can take many forms. In this thesis, we promote understanding of
walking through simple physical models and simple control algorithms which relate to those models.
The algorithms are kept functionally transparent, such that it is easy to understand the purpose
of any fragment of the algorithm and any control parameters based on their underlying physical
meaning.

An additional benefit of keeping the algorithms simple and minimizing the required control effort
is that it makes it likely that the algorithms are biologically plausible, meaning that they could be
implemented in a reasonable amount of biological hardware. However, even if control strategies used
on the robot are similar to those of biological creatures, the exact way the strategies are implemented
on a biological creature may be very different from how they are implemented on the robot. How
biological creatures implement control is still an open question.

Nature tends to exploit the relevant aspects of a specific problem. Likewise, instead of attempting
to develop techniques that are generally applicable across the spectrum of robotics, we focus only on
bipedal walking. This allows us to simplify the control by exploiting elements which are specific to
bipedal walking. Some of these elements include the specific nature of the bipedal walking problem
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and the natural dynamics of bipedal mechanisms.

1.4 Bipedal Walking is Difficult (When Viewed as a General
Dynamical System)

There are several characteristics of bipedal walking robots that make them seemingly difficult to
control:

• Non-linear dynamics

• Multi-variable dynamics

• Naturally unstable dynamics

• Limited foot-ground interaction

• Discretely changing dynamics

• Subjective performance evaluation

The first three characteristics make synthesizing a controller using traditional control techniques
difficult, but do not rule it out. Many “textbook” control problems are non-linear, multi-variable,
and naturally unstable. It is the last three of these characteristics that move bipedal walking outside
the range of traditional techniques.

Limited foot-ground interaction is a distinctive feature of bipedal walking. It is what makes
walking different from the control of robotic arms, which have several traditional control methods
available. Feet can only push on the ground, not pull. Also, the torque about the foot is limited as
the foot will rotate over its toe or its heel if too much torque is applied. Because of this, limited
control action can occur during a stride of walking. In particular, the forward velocity of the robot
cannot be instantaneously controlled.

The dynamics of a bipedal walker change as it transitions from single support to double support
and back to single support. Since the dynamical equations are not continuous, determining Lyupanov
functions or applying other traditional techniques is challenging.

The performance measure of a bipedal walker is not as well-defined as that of typical robotic
systems. For example, the performance of an industrial robot arm is often measured by how well
it can follow a given trajectory. In bipedal walking, performance should not be based on trajectory
following, as the exact trajectory does not really matter. To a first order approximation, performance
is a one-bit measure – does the robot walk or does it fall down? Some secondary considerations such
as smoothness and efficiency are easy to quantify, but those such as grace and biological similarity
are more subjective. How does one quantify the emotional response of a kindergarten class upon
seeing a robot walk?

Because bipedal walking is a challenging control problem, we have taken the approach of de-
termining a controller based on the specific physics of bipedal walking, rather than attempting to
develop a general approach which is applicable to other classes of robots. By concentrating specif-
ically on bipedal walking, we can focus on the factors that make it unique and can be exploited in
the control of walking. Some of these factors make bipedal walking easy, despite seeming challenging
from a control synthesis point of view.

1.5 Bipedal Walking is Easy (When Viewed as a Specific
Mechanism)

There are several characteristics of walking which make it easy. These include the inherent robustness
of the bipedal walking problem and the natural dynamics of the bipedal walking mechanism. These
characteristics can be exploited in the control of bipedal walking robots.
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1.5.1 Exploiting Inherent Robustness

The inherent robustness of the bipedal walking problem can be exploited in the control of walking.
By inherent robustness, we mean that specific trajectories, precision, and repeatability are not
important in walking. The resultant motion can vary considerably between individuals and even in
the same individual from step to step and it does not matter. Bipedal walking is achieved if the
robot gets from point A to point B without falling down. From a mathematical perspective, this is
equivalent to saying that there is an enormous set of trajectories through state space which can be
considered satisfactory. Simple control techniques can be used to achieve one of these trajectories.

The specific nature of the walking problem can also be exploited in control. Bipedal walking
occurs when the feet (at the distal end of the legs) are placed one in front of the other in a repeating
pattern, with legs alternating between support and swing. Simple models of this technique can be
used to develop insight and determine control strategies. For instance, the simplest model of bipedal
walking is an inverted pendulum rising and falling. We know from experience that the pendulum
slows down as it is rising and speeds up as it is falling. By adding an articulated body and an
actuated foot to this model, we can make an analogy between the center of mass and the mass of
the pendulum and between the center of pressure on the foot and the pivot of the pendulum. To a
first order approximation, whenever the center of mass is in front of the center of pressure, the robot
accelerates, and whenever the center of mass is behind the center of pressure, the robot decelerates.

These and other simple models can be exploited to determine simple strategies for bipedal walk-
ing. For example, in order for the robot to speed up, it can increase the amount of time that the
center of mass of the robot is in front of the center of pressure, either through foot placement, ankle
torque, force distribution during double support, or body lean.

1.5.2 Exploiting Natural Dynamics

Many robotics researchers have recognized the usefulness of designing a mechanism such that the
natural dynamics performs much (if not all) of the task, and the rest is left to the controller. In this
way, instead of viewing the mechanics strictly as a dynamical system to be controlled, it is often
treated as part of the solution itself. In this thesis, we try to maintain this view and consider the
bipedal walking mechanism and some of its natural dynamical mechanisms as part of the control
solution.

Many researchers [Adolfsson et al. (1998), Fowble & Kuo (1996), Garcia et al. (1998), Goswami
et al. (1997), McGeer (1990a)], have exploited natural dynamics in order to make walking machines
which are fully passive. These devices rely completely on their dynamics, and interaction with
gravity and the ground, in order to walk. Schaal & Atkeson (1993) showed that open-loop strategies
can be successfully used in robot juggling tasks. Williamson (1999) exploited the natural dynamical
interaction between neural-like oscillators and mechanical arms to perform tasks such as playing
with a slinky, turning a crank, and drumming. Raibert (1986) exploited the natural dynamics
of a springy pogo-stick-like leg in his running machines. Playter & Raibert (1994) showed that
unstable layout somersault maneuvers can be stabilized by the addition of arms connected to the
body with passive springs. Ringrose (1997) showed that monopedal, bipedal, and quadrupedal
hoppers utilizing a constant speed motor, springy leg, and curved foot can hop without any sensing
or control. Moran (September 1996) reports on some of these approaches and describes the PAMS
(passive aerodynamically stabilized magnetically damped satellite), a satellite designed to stably
hold an orientation while rotating about the Earth, without the need for thrusters, sensors, or
control.

This prior work in exploiting natural dynamics motivates the approach described in Chapter 5
of this thesis. Three different natural mechanisms are exploited. A knee cap prevents the leg from
inverting, which makes control of height simple. A compliant ankle makes the center of pressure on
the foot travel forward with the center of mass of the body. And the natural swing dynamics of the
leg makes swing control simple and natural looking.
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1.6 Experimental Robot

Experiments on a real robot (Figure 1-1) are emphasized in this thesis. While we also use simulation
extensively, we find that building a real robot forces the resolution of issues that might otherwise be
overlooked in simulation. For example, sensor noise and actuator limitations are important issues,
both in building real robots and understanding biological systems. An algorithm that is not robust
to noise might work well in simulation, but may not be applicable to a real robot or an animal. While
noise and sensor limitations can be modeled in simulation, there may be other aspects which are
overlooked or are difficult to model, such as link compliance, foot-ground interaction, and stiction.
Building a robot eliminates the need to model these effects as the real world will account for them.
Also, it is often useful to interact with the robot to get a feel for whether the algorithm is performing
as expected and to get a feel for how control parameters may be changed. For instance, suppose
one wishes to tune a parameter corresponding to the torsional spring gain on a pitch servo. By
physically rotating the robot’s body and feeling how the robot responds, one can decide if that
parameter needs to be increased or decreased. Thus the robot provides a user interface which would
be very difficult to reproduce in simulation. Besides, building robots is fun and educational, and
one of the best means for inspiring future generations of engineers.

1.7 Thesis Contributions

The contributions of this thesis are:

1. The presentation of simple models of bipedal walking which aid in understanding the mechanics
of bipedal walking.

2. The design and construction of a planar bipedal walking robot, called Spring Flamingo.

3. The development of simple control algorithms which allow Spring Flamingo to walk on flat
ground and rolling terrain.

4. The demonstration that natural dynamic mechanisms can make control of bipedal walking
easier to achieve and more natural looking, thereby bridging the gap between passive dynamic
walkers and powered walkers.

5. The presentation of the limits to top speed in bipedal walking.

6. The development of a fast walking algorithm that results in speeds up to 1.25ms , which is quite
fast for contemporary bipedal walking robots.

7. The development, in simulation, of a simple control algorithm for 3D bipedal walking on flat
ground.

1.8 Thesis Outline

This thesis proceeds as follows:
Chapter 2 gives background for this thesis, consisting of previous powered and passive bipedal

walking robots, Virtual Model Control, and Series Elastic Actuators.
Chapter 3 presents several simple models of bipedal walking. These models help build physical

intuition into walking, which aids in algorithm development.
Chapter 4 presents a simple control algorithm for planar bipedal walking. The algorithm is

physically based on the simple models presented in Chapter 3. The algorithm uses a state machine
and simple control strategies. Simple modifications are made to the algorithm for walking over
slopes and rolling terrain.

Chapter 5 presents an algorithm that relies on the natural dynamics of a knee-cap, compliant
ankle, and passive swing-leg. These mechanisms simplify height control, speed control, and swing-leg
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control. Speed was found to be self-stabilizing for slow speeds. That is, there was no explicit control
mechanism which fed back walking speed.

Chapter 6 hypothesizes that minimum swing time is a major limiting factor of maximum
walking speed at Earth’s gravity. Evidence to support that hypothesis is presented. This knowledge
is used in the fast walking algorithms of Chapter 7.

Chapter 7 presents an algorithm for walking fast. The algorithm focuses on swinging the
swing-leg quickly. To do so we use feed-forward inverse dynamics (computed torque) plus active
feedback.

Chapter 8 presents an algorithm for 3D walking. The algorithm is an extension of the planar
algorithms by adding lateral speed control through lateral foot placement and ankle torque.

Chapter 9 concludes the thesis with discussion and suggestions for future work.
Appendix A gives an overview of the experimental setup.
Appendix B describes the adaptive control method used to determine the dynamic parameters

of the swing-leg for the control in Chapter 7.

1.9 Note on Data in this Thesis

This thesis includes data both from simulations and from the real robot. The figure captions indicate
the source of the data. Figures with simulated data are marked sim while figures with data from
the real robot are marked real . This approach is borrowed from Williamson (1999).
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Chapter 2

Background

In this Chapter we review previous powered and passive bipedal walking robots which have influenced
this thesis and two technologies, Virtual Model Control and Series Elastic Actuators, which are used
throughout this thesis.

There are many powered bipedal walking robots, some of which will be reviewed in Section 2.1.
The existence of these robots and some of their control techniques have motivated much of the work
and the approach followed in this thesis.

Passive dynamic walkers, reviewed in Section 2.2, are an interesting class of walking robots which
have no actuation, sensing, or control systems. These robots walk down a shallow ramp, powered
only by gravity. They motivate the natural dynamic mechanisms discussed in Chapter 5.

Virtual Model Control, reviewed in Section 2.3, is a descriptive control language which uses
simulated mechanical elements, connected to a real robot, in order to control the robot to perform
a task. Virtual Model Control aids the implementation of intuitive control strategies discussed in
Chapter 4.

Series Elastic Actuators, reviewed in Section 2.4, are force-controllable actuators which enable
much of the experimental work in this thesis. They allow for the implementation of Virtual Model
Control, which requires high force fidelity and bandwidth, and the exploitation of natural dynamics
which requires low actuator impedance. They also provide high shock tolerance which prevents
foot-ground impulses from damaging the robot.

2.1 Powered Bipedal Walking Robots

There are a number of powered bipedal walking robots that have been built by various groups
throughout the world. A handful exploit the inherent robustness of walking by using simple control
methods. A few of them benefit from the natural dynamics of the mechanism, though none explicitly
exploits the natural dynamics.

The robots fall into two broad categories. Many play back pre-recorded joint trajectories. Others
use heuristic control approaches. Some of them combine both playback and heuristic control. Below
we describe some of the robots which have had an impact on this thesis.

2.1.1 Waseda

Researchers at Waseda University have been working on powered bipedal walking robots since 1969.
They have built a series of robots; the first were static walkers, and the most recent robots are
dynamic walkers. All of the robots share the common feature that they play back pre-recorded joint
trajectories. The recent robots all use trunk motion to dynamically compensate for moments so that
the center of pressure on the foot follows a desired trajectory.

WL-5 [Kato & Tsuiki (1972)] was an 11 degree-of-freedom static walker which walked with a 20
centimeter step at 2 minutes per step. The robot was controlled by playing back pre-recorded joint
trajectories. The only feedback was bang-bang hydraulic position control of the joints.
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Figure 2-1: Some previous powered bipedal walking robots. From left to right are WL-10RV1
from Waseda, P2 from Honda, Toddler from UNH, the Moscow State University Biped, SD-2 from
Clemson and Ohio State, Biper from University of Tokyo, Meltran II from Mechanical Engineering
Lab in Tsukuba, and Timmy from Harvard.
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WL-9RD [Kato et al. (1981)], a 10 degree-of-freedom biped, walked quasi-dynamically with a 45
centimeter step at 9 seconds per step. During single support, pre-recorded static joint trajectories
were played back. During exchange of support, the robot dynamically transferred support from one
leg to another by following the inverted pendulum dynamic trajectory, that is, by falling onto the
new support leg.

WL-10RD [Takanishi et al. (1985)], a 12 degree-of-freedom biped, walked dynamically by playing
back joint trajectories which result in dynamic walking. To ensure stability, the resultant path of
the zero moment point (ZMP), also known as the center of pressure (COP), was computed before
walking. As long as the ZMP remains strictly inside the support polygon of the support foot, the
robot can be treated as though it is a fixed manipulator. During single support, the only feedback
control was the control of the joint trajectories. During the changeover phase, all the joints were
fixed except for the ankles which employed torque feedback to transfer the center of mass from one
foot to the other. Strain gauges on the motor shaft were used during this stage to estimate the
torque on the joint. Using this algorithm, WL-10RD walked at 1.5 seconds per step with a step
length of 40 centimeters.

WL-12RIII [Takanishi et al. (1990a)] employed a heavy trunk with 2 degrees of freedom to ensure
dynamically that the ZMP stayed within the support polygon of the foot. The robot had 8 degrees
of freedom in total. Before walking, desired lower limb and ZMP trajectories were determined.
Trunk motion was determined by iteratively solving the approximate dynamic equations of motion
using the desired lower limb and ZMP trajectories. During walking, these pre-recorded trajectories
were played back without any additional feedback or on-line control. With this method, the robot
achieved walking on stairs with a step height of 10 centimeters at a rate of 2.6 seconds per step and
over a trapezoidal terrain with an inclination of ±10 degrees at a rate of 1.6 seconds per step. On-line
control was added to compute the trunk motion when an external force was applied to the robot
[Takanishi et al. (1990b)]. The trunk motion was altered in real time from the pre-recorded trajectory
to maintain the pre-recorded stance leg and ZMP trajectories. To return the trunk motion to the
pre-recorded trajectory, the step length of the swing-leg was changed, which required the trajectory
of the joints of the swing-leg to be changed on-line. The robot was able to adapt to forces up to
100N, applied for 0.3 seconds, while stepping at 0.64 seconds per step.

WL-12RV [Yamaguchi et al. (1993)] improved over WL-12RIII by adding another degree of
freedom to the trunk, bringing the trunk to 3 degrees of freedom and the robot to a total of 9
degrees of freedom. The control method was similar to WL-12RIII. Limb and ZMP trajectories
were precomputed. The trunk trajectory was then calculated to ensure the desired limb and ZMP
trajectories. An added criterion was to minimize the yaw torque between the foot and ground. The
trajectories were then played back with no other on-line feedback. It was reported that adding the
third axis to the trunk motion improved the stability of the robot and allowed it to walk 50 percent
faster with a 0.3m step at 0.54 seconds per step.

WL-12RVI and WL-12RVII [Yamaguchi et al. (1994, 1995, 1996)] were improved over WL-12RV
by adding a compliant foot which could detect forces and moments. The previous control method
was used for flat ground walking. However, when the robot encountered a small step 12 mm high,
the foot detected the change in terrain and the preset joint trajectories were modified to account for
the height change. After adapting to the terrain, the robot returned to its preset trajectories.

WL-13 and WL-14 [Yamaguchi & Takanishi (1997), Yamaguchi et al. (1998)] used antagonistic
joints employing non-linear spring mechanisms to control both position and impedance of a joint.
The control method was the same as WL-12RVII, except that during the swing phase the impedance
of the joints of the swing-leg were reduced. With this approach, the required power was reduced
as the natural pendulum dynamics of the swing-leg were exploited somewhat. However, since pre-
recorded trajectories were used, the benefit of this technique depended on how well those trajectories
matched the passive dynamic trajectories.

Wabian [Yamaguchi et al. (1999), Setiawan et al. (1999)] is a humanoid bipedal walking robot.
An anthropomorphic body is used in lieu of the compensating trunk of the WL-12, WL-13 and
WL-14 series. There are 14 degrees of freedom in the arms, 6 in the eyes and neck, 6 in the lower
legs, 3 in the trunk, and 6 in the hands, for a total of 35 degrees of freedom. The walking control
is similar to that used for WL-13 and WL-14 except that arm trajectories can now be used. Joint
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trajectories of the arms and legs and ZMP trajectories are pre-recorded. Compensatory motions of
the trunk are then determined using a dynamic model. The preset walking pattern is then played
back using joint position control during walking. During swing the impedance of the joints in the
swing-leg is lowered. Wabian can dynamically walk, dance in place, and be led by a human pushing
on its arms.

In summary, Waseda’s walking algorithms rely on playing back pre-recorded joint and trunk
trajectories which produce the desired ZMP trajectory in simulation. In order to adapt to terrain
changes or external disturbances, the desired trajectories are altered. The early robots all used
rigid position control at the joint level. The most recent robots have a higher degree of compliance
control. We believe the compliance can be exploited more fully to produce more natural-looking
walking. However, this may require relaxing the requirement of precise trajectory tracking which is
still at the heart of the controllers.

2.1.2 P2 and P3

P2 (and its successor P3) was developed by Kazuo Hirai, Masato Hirose, Yuji Haikawa, Toru Tak-
enaka and colleagues at the Honda Wako Research Center from 1986 to the present [Hirai et al.
(1998)]. The robot has 12 actuated degrees of freedom in the lower body - three in each hip, one in
each knee, and two in each ankle. The robot is primarily controlled by playing back pre-recorded
joint trajectories acquired from direct measurements of human subjects. Three additional controllers
modify the trajectory in order to maintain balance in light of disturbances, terrain, or modeling er-
rors. A ground reaction force controller modifies joint angle trajectories to achieve the desired zero
moment point and thus conform to uneven terrain. A model ZMP controller shifts the desired ZMP
by changing the ideal body trajectory when the robot is about to tip over. A foot landing position
controller changes the stride length to compensate for changes in the body trajectory made by the
model ZMP controller. With this control scheme the robot can walk fairly fast (1.1 meters per
second) and walk over 10-degree inclines. The robot can also walk up and down stairs and turn in
place.

Honda’s control method is similar to the one used by the Waseda group with WL-10RD. The
resultant walking appears a bit more natural, however, for several reasons. First, the trajectories
were recorded by motion capture from a real human rather than derived through trial and error.
Second, high speed was emphasized as a goal of the project. Third, by using force/torque sensors
in the feet, the ankle was made compliant through the ground reaction force controller which allows
the robot to conform to uneven surfaces.

2.1.3 Toddler

Toddler was developed by Tom Miller, Andrija Kun, P. Latham, and colleagues at the University
of New Hampshire from 1994 to the present [Kun & Miller (1998, 1996), Miller (1994)]. The robot
has ten actuated degrees of freedom - two on each hip, one on each knee, and two on each ankle. A
gait generator plays back preprogrammed posture sequences which are initiated by sensory triggers.
The desired posture is then modified by five CMAC neural networks. The first CMAC modifies the
sideways (lateral) lean angle to correct for errors in the leg lift duration. The second CMAC modifies
the forward/backward lean of the hips to keep the measured center of pressure in the middle of the
foot. The third and fourth CMACs learn adjustments to the front/back and sideways desired lean
angles so that the actual lean angles better match the desired posture. The final reference posture
then is converted to desired joint angles with a simple inverse kinematics mapping that assumes the
sagittal and frontal planes are decoupled. The fifth CMAC is used to change the lateral roll of the
ankles during double support to keep the center of pressure in the middle of the foot during double
support. The commanded joint angles are then modified by a reactive controller that uses feedback
from gyroscopes and accelerometers to modify the desired joint angles to better track the desired
lean angles and velocities. The final joint trajectories are tracked using PID servos.

This approach is appealing because it does not require precise dynamic models of the robot.
Instead, the CMAC neural networks learn trajectory modifications based on the state of the robot
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in order to achieve the desired posture trajectories. Once learning is done, if the CMAC weights are
frozen, then the controller can be seen as having both feed-forward trajectories and reactive control.
The reactive control can be stated qualitatively as follows: lean forward/backward and side to side
to keep the center of pressure in the middle of the foot, and rotate the ankles to control lateral speed
and to keep the center of pressure in the middle of the foot. The CMAC neural networks can be
seen as automatic parameter tuners for these reactive controllers. The robot walks very slowly in
the forward direction (maximum speed is 0.12 meters per second) due to its small stride length (9
centimeters maximum). However, it walks very dynamically in the frontal plane since the pendulum
tipping dynamics dominate. It seems possible to extend the UNH approach in order to make the
sagittal plane walking faster and more graceful.

2.1.4 Moscow State University Biped

The Moscow State University Biped was developed by A. Grishin, A. Formal’sky, A. Lensky, S.
Zhitomirsky, V. Budanov and colleagues [Grishin et al. (1994)]. The robot was a planar biped having
only two actuated degrees of freedom. The leg lengths were controlled by one actuator, such that the
total length of the legs remained constant. The angle between the two legs was controlled by another
actuator. Polynomial reference trajectories were determined for the leg lengths and hip angle. The
parameters of the polynomials were chosen through iteration such that the resultant motion was
consistent with the dynamic equations of motion. During walking the reference trajectories were
then played back. Errors in the motion were compensated for by on-line control during double
support. The double support trajectories and the time to transition to single support were modified
so that the initial conditions of the robot at the beginning of the single support state would be closer
to the pre-recorded trajectories.

Since this robot has point feet, it must walk dynamically and exhibits motion consistent with its
natural dynamics. With only two actuated degrees of freedom, though, it appears rather unnatural.
A four degree of freedom robot at Moscow State is currently working but has not been reported yet.

2.1.5 SD-2

SD-2, also called CURBI, was developed at Clemson University and Ohio State University by Yuan
F. Zheng and colleagues. The robot had four degrees of freedom; two in the hips and two in the
ankles. The control technique was play-back of pre-recorded trajectories that result in static walking
[Golden & Zheng (1990), Zheng & Shen (1990)]. Pure playback was successful for flat ground and
stairs. For sloped surfaces, the foot was fitted with force sensors to detect the slope blindly (without
vision or previous information). The pre-recorded hip trajectories were then modified such that the
robot leaned forward if going uphill and backward if going downhill. In this way, the other joint
trajectories could remain unchanged while still walking statically.

[Yi & Zheng (1996)] investigated reduced ankle power. Due to reduced power, the robot could not
accurately follow the pre-recorded ankle trajectory. A displacement was added to the hip trajectory
to compensate for errors in the ankle trajectory. Essentially, forward speed and displacement were
controlled by leaning forward or backward to change the center of mass location.

2.1.6 Biper

Biper was developed by Hirofumi Miura and Isao Shimoyama at the University of Tokyo in 1984
[Miura & Shimoyama (1984)]. Five different versions of the robot were developed with various degrees
of freedom. They all used the same control method. The key to the control method was to assume
small motions so that the equations of motion of the robot could be linearized, to allow for the use
of linear control theory. First the equations of motion were computed and linearized. The equations
of motion consist of both the continuous differential equations which determine motion during the
single support phase and the discrete differential equations which describe step to step transition
conditions. Next, joint trajectories were determined which were consistent with the equations of
motion. The torque trajectories required to achieve the joint trajectories were then determined.
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Error dynamics were then computed. Since the system is linear, the error dynamics are the same as
the original dynamics, hence they need to be stabilized. During single support, joint torques were
used to compensate for errors in the joint trajectories. Foot placement was used to stabilize the
dynamics from step to step. The final dynamics were computed and shown to be stable, based on
the final eigenvalues of the system.

This approach is one of the few which can be theoretically proven to result in stable walking.
Unfortunately, because of the assumption of linearity, only small step sizes can be taken. With
the exception of small strides, the Biper robots appear fairly natural since the natural pendulum
dynamics are allowed to prevail. Trajectory errors are tolerated and compensated for by controlling
speed via foot placement.

2.1.7 Meltran

Meltran was developed by Shuuji Kajita, Kazuo Tani, Akira Kobayashi, and Tomio Yamaura at
the Mechanical Engineering Laboratory (MEL) in Tsukuba between 1990 and 1996 [Kajita & Tani
(1996), Kajita & K.Tani (1996, 1995), Kajita et al. (1992), Kajita & Tani (1991b,a), Kajita et al.
(1990)]. The robot is a planar bipedal walker with 6 actuated degrees of freedom. A simplified
dynamic model was used which assumed that the legs were massless, the upper body was a rigid
inertial element and the robot walked with the center of mass at a constant height. With these
assumptions, the dynamics are linear and equations of motion can be determined in closed form.
Height and pitch are controlled by servoing joint angles based on inverse kinematics. Ankle torque
is used to compensate for modeling errors so that the forward velocity follows the estimated forward
velocity based on the equations of motion with zero ankle torque. Forward speed is controlled from
step to step by foot placement. With the simplified dynamic equations of motion, a quantity which
remains constant during a stride can be determined. This constant is called the Orbital Energy. Foot
placement is determined such that the Orbital Energy of the next step corresponds to the desired
velocity. With this control technique, the robot walked at a speed of approximately 0.5 meters
per second. Forward speed could be commanded in real time with a joystick. The algorithm was
extended for walking over moderate steps. As long as the center of mass follows a line, the equations
of motion remain linear and the orbital energy constant. Therefore only minor modifications needed
to be made to the algorithm. Ground height was detected using a range sensor attached to the front
of the robot.

MEL’s control method was rather elegant, in that it allowed the natural dynamics of the robot
to dictate the forward velocity rather than following precise trajectories. However, walking at a
constant height is inefficient since kinetic energy decreases during the first half of the stride and
increases during the second half while potential energy remains constant. Meltran also did not fully
exploit its torque-controllable ankles. Ankle torque was used only to correct for modeling errors. It
was not used for speed control, or energy injection at toe-off.

2.1.8 Timmy

Timmy was developed by Eric Dunn and Robert Howe at Harvard in 1994 [Dunn & Howe (1994,
1996)]. The robot is a planar walker with four degrees of freedom. The hips are driven with electric
motors and the legs are driven with pneumatic cylinders. Dunn and Howe derived conditions for
smooth exchange of support, with one solution being a constant height trajectory.

Dunn and Howe used a heuristic control approach. Speed was controlled by foot placement,
based on a symmetry argument. Height was controlled by servoing leg length, based on inverse
kinematics. Pitch was servoed using hip torque on the stance leg. The swing-leg was servoed to
follow a cubic spline trajectory, ending with the desired step length.

Height, step length and speed could be changed by the user. The robot’s top walking speed was
approximately 0.3 meters per second with a step length of 20 centimeters. Because the robot had
point feet, it appeared fairly natural, as the natural pendulum dynamics of the robot were exhibited.
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Figure 2-2: A passive dynamic walker developed by Andy Ruina’s lab at Cornell University. The
walker walks down shallow slopes with no sensors, computation, or actuation.

2.1.9 Powered Robot Summary

We see that previous powered bipeds fall into two broad categories: those which predominately use
pre-recorded trajectory playback and those which predominantely use an algorithmic controller.

The control techniques used in this thesis fall in the algorithmic category. The algorithms
presented will most closely match those of Dunn and Howe’s Timmy and Kajita’s Meltran with
three major differences:

1. Instead of using a constant height trajectory, we straighten the leg during stance so that a
compass-like gait is achieved. The exact height trajectory is not important.

2. Instead of controlling speed by only foot placement, we also use support ankle torque, body
pitch, and toe-off ankle torque.

3. Instead of rigidly position-controlling the swing-leg, in Chapter 5 we let it swing freely, ex-
ploiting its natural dynamics. These differences result in walking that is faster, more robust,
and appears more natural.

2.2 Passive Dynamic Bipedal Walkers

Passive dynamic walkers are a class of mechanisms which can walk smoothly and stably down a
shallow incline with no sensing, control, or actuation. These passive dynamic walkers exhibit a
steady walking cycle which is smooth and efficient and appears incredibly natural.

McGeer was the first to study these robots in depth [McGeer (1990a)]. He developed a method
for analyzing stability, and implemented a few different designs. Several groups have expanded on
McGeer’s work to further analyze passive dynamic walkers and find other walking machines which
fall into this class. Coleman, Ruina and colleagues and Thuilot, Goswami and colleagues studied
bifurcation and chaos of passive gaits due to parameter variation [Coleman et al. (1997a), Thuilot et
al. (1997)]. Ruina’s group at Cornell University have discovered and built several different passive
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walkers, one of which is shown in Figure 2-2. Smith and Berkemeier discovered and analyzed a
passive quadrupedal walking mechanism [Smith & Berkemeier (1997)]. Adolfsson, Dankowicz, and
colleagues started examining 3D passive walking but retained the planarizing effect of overlapping
feet [Adolfsson et al. (1998)]. Fowble and Kuo showed that a simple control law consisting of lateral
foot placement was enough to stabilize a 3D passive bipedal walker [Fowble & Kuo (1996)].

While there have been many different studies on passive dynamic walking, they all employ a
variant of McGeer’s original method of analysis:

• Model the system under study and derive equations of motion. These equations include contin-
uous differential equations governing the continuous motion during a support phase; discrete
impact equations governing the impact during exchange of support; and the conditions which
cause a discrete impact.

• Solve the continuous equations and combine with the impact equations, resulting in a single
equation, called the stride function. The stride function is a Poincare map relating the state
during one part of a step with the state during the same part of the the next step.

• Find fixed points of the stride function and linearize it about these fixed points, resulting in a
linear Jacobian matrix.

• Compute eigenvectors and eigenvalues of this Jacobian matrix to determine modes and stability
of the system.

• Examine effects of parameter variation on the number of fixed points and their stability. This
leads to bifurcation diagrams.

• Determine the region of convergence and study how parameter variation effects the region of
convergence.

• Create an experimental machine. Tweak its parameters based on numerical and real experi-
mentation.

• Draw conclusions.

This method can be applied analytically to simple systems, but requires numerical simulation and
experimentation for more complicated systems. Fixed points, corresponding to periodic gait cycles,
can be found through a numerical search by starting the simulation with various initial conditions
and examining convergent trajectories. Jacobian matrices can be experimentally determined by
disturbing the simulation from the periodic gait and recording state/next-state pairs. A number of
such pairs can be obtained under various disturbances and used to solve for a linear matrix fit of
the Jacobian.

Many in the passive dynamic walking community have suggested ways in which a passive machine
could be equipped with actuators to increase its performance. McGeer suggested using plantar flexion
to enable a passive walker to walk on flat ground or uphill. Goswami, et. al [Goswami et al. (1997)]
presented a simple control law for increasing the region of convergence of a two link passive walker.
Van der Linde [der Linde (1998)] built a machine which walks on level ground by pumping energy
each step into a passive mechanism. Camp [Camp (1997)] showed that open loop ankle torque during
toe-off results in stable walking on flat ground. However, no one has yet built a passive dynamic
walking machine which has the capabilities of powered robots, such as being able to walk at various
speeds on various terrain.

Passive dynamic research has motivated much of the work in this thesis, particularly the approach
described in Chapter 5. However, we approach the problem from the opposite direction. Instead of
starting with a fully passive machine, we exploit the natural dynamics of a powered bipedal robot
in order to simplify the control and make its gait appear more natural. In this way, we can use a
mechanical design that is more similar to animals in structure than the passive dynamic walkers and
also may be able to achieve a wider range of walking capabilities. Chapter 5 describes our approach
which combines powered and passive bipedal walking.
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Figure 2-3: Virtual Model Control applied to Spring Turkey. A virtual “granny walker” (left) is
used to support the robot and keep it balanced. A damper connected to a “dog-track bunny” (right)
is used to control forward speed during double support. A virtual “reciprocating gait orthosis” (not
shown) is used to make the swing-leg mirror the stance leg.

2.3 Virtual Model Control

A major goal of this thesis is to keep the control algorithms easy to understand. This is achieved by
making use of intuitive control strategies and implementing them in an intuitive manner. Virtual
Model Control [Pratt (1995)] is a tool which helps achieve this goal.

Virtual Model Control is a language for describing interactive force behaviors. This control
technique uses simulations of virtual mechanical components, attached between two point on the
robot, to generate real actuator torques (or forces). For a serial link chain, the transformation is
simply,

τ = JTF (2.1)

where F is the force produced by the virtual component, J is the Jacobian relating the two attach-
ment frames of the virtual component, and τ is the joint torques.

The applied joint torques create the same effect that the virtual components would have created,
had they physically existed, thereby creating the illusion that the simulated components are con-
nected to the real robot. Such components can include simple springs, dampers, dashpots, masses,
latches, bearings, non-linear potential and dissipative fields, or any other component which outputs
a force based on its state. Virtual components can even contain adaptive and learning elements
[Pratt (1994)]. Virtual Model Control borrows ideas from Virtual Reality, Hybrid Position-Force
Control [Raibert & Craig (1981)], Stiffness Control [Salisbury (Dec. 1980)], Impedance Control
[Hogan (1985)], and the Operational Space Formulation [Khatib (1986)].

Virtual Model Control was used to control Spring Turkey [Pratt et al. (1997)], a planar bipedal
walking robot, and a simulated hexapod [Torres (1996)]. The hexapod had 18 degrees of freedom (2
in each hip and one in each ankle). It could walk in any direction while turning, traversing terrain,
and balancing an inverted pendulum on its back. Spring Turkey had four degrees of freedom. There
was an actuated hip and knee on each leg. The robot had no feet or ankles, and could not walk
very robustly. Figure 2-3 shows the virtual components used to control Spring Turkey. A virtual
“granny walker” is used to support the robot and keep it balanced. The springs push back in
order to maintain height and pitch while the dampers prevent oscillation. A damper connected
to a “dog-track bunny” is used to control forward speed during double support. If the robot is
traveling at a different speed than the bunny, the damper applies a correcting force to the robot. A
virtual “reciprocating gait orthosis” is used to make the swing-leg mirror the stance leg by applying
correcting forces to the swing-leg. A state machine was used to cycle in the various components
depending on the current phase of the gait. Using these simple components Spring Turkey was able
to walk at 0.5ms . In this thesis, Virtual Model Control is used as one of the tools for controlling
Spring Flamingo.
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2.4 Series Elastic Actuators

In order to exploit the natural dynamics of the bipedal mechanism, it is important that the inertia
and friction of the actuators does not interfere with the dynamics of the robot. In other words, it
is important to be able to make the impedance of the actuators low. However, this is difficult to do
with standard electric servos.

Electric motors work at high speed and low torque while muscle works at low speed and high
force. To make motors behave more like muscles, they need to be geared down, which increases
their friction and reflected inertia. Therefore, the dynamics of most robots are dominated by their
actuators instead of the dynamics of their structure. Feedback control is typically used to overcome
the large apparent inertia in making the joints track trajectories. The actuators can therefore be
seen as rigid position sources.

However, rigid trajectory tracking is usually unnatural as the prescribed trajectories are based
on cubic splines which makes the motion look “too good” and hence “robotic”. It is inefficient since
large torques are required whenever the trajectories deviate too much from the natural dynamic
trajectories. It is not robust since it requires accurate models of the environment whenever there
is contact between the robot and the environment. Such contacts occur on every step in bipedal
walking. Robots that follow rigid trajectories, such as Waseda’s earlier bipeds, cannot tolerate
bumps in the ground as little as a centimeter in height.

Most of the more successful bipedal walking robots employ compliance in one form or another.
Waseda’s Wabian uses opposing actuators with nonlinear springs in order to vary joint impedance.
Honda’s P2 and P3 use force/torque sensors on springy feet and vary the joint trajectories in order
for the foot to comply with the ground. Several robots have point feet or limited ankle torque. This
effectively gives the ankle compliance (zero stiffness in the case of point feet). At the extreme, the
passive dynamic walkers have high compliance (zero impedance) at all of their joints.

Ideally, a bipedal robot would have perfect torque sources at its joints. In that case, each joint
could vary in compliance from being completely limp (zero torque) to being a rigid position source
using high gain feedback. Perfect torque sources are impossible to achieve. However, we believe
bipedal walking only requires moderate stiffnesses compared to industrial robot arms. Therefore,
the bandwidth of the torque sources can be limited.

Series Elastic Actuators [Pratt & Williamson (1995), Williamson (1995), Robinson et al. (1999)]
are a good solution for approximating torque sources at the joints. They are force controllable
actuators with moderate dynamic range (ratio of largest applicable force to smallest resolvable force)
and moderate bandwidth. The underlying idea in Series Elastic Actuators is to purposefully place
an elastic element (spring) in series with the output of the actuator, after the gear reduction (see
Figure 2-4). By measuring the spring deflection, the output force can be computed using Hooke’s
Law. The motor is then servoed such that the actual output force matches the desired force. The
more compliant the elastic element, the more the inertia and stiction of the motor and gear train
can be masked, resulting in low output impedance.

Series Elastic Actuators are used in all of the Leg Laboratory’s bipedal walking robots and our
new running robots. They allow for the implementation of Virtual Model Control, which requires
control of joint torques. The actuators used in Spring Flamingo have a dynamic range (ratio of
largest applicable force to smallest resolvable force) of over 100 and a bandwidth of 15 Hz. Our
most recent implementation has a dynamic range of over 300 and a bandwidth of 45 Hz.

2.5 Conclusions

There are many examples of powered bipedal walking robots and passive bipedal robots. While
researchers have recommended combining the two approaches for some time, this thesis is the first
example we are aware of in which an experimental robot was constructed that explicitly takes
advantage of the benefits of both powered and passive robots. To do so requires actuators with
negligible dynamics compared to the natural dynamics of the robot. We use Series Elastic Actuators
which have low impedance and friction. They have sufficient bandwidth and dynamic range for
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Figure 2-4: Schematic of a Series Elastic Actuator. A spring is placed between the transmission and
the load. By measuring spring deflection, the load force can be estimated. A controller drives the
motor based on the error between the desired force and the measured force. This technique allows
for good force fidelity and bandwidth and also provides shock tolerance since the transmission is
protected from shock loads by the spring.

bipedal walking and are sufficiently adequate as torque sources to use in implementing Virtual
Model Control, one of the tools used in the algorithm development of Chapters 4 to 8.

Before describing the algorithms, however, we first introduce some simple models of bipedal walk-
ing in the next chapter and examine limits to maximum walking speed in Chapter 6. Understanding
the walking models will assist in understanding why the algorithms work. Understanding limits to
maximum walking speed will clarify the motivation for the approach used to control the robot to
walk fast in Chapter 7.
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Chapter 3

Simple Models of Bipedal Walking

Before jumping into bipedal walking algorithms, let’s start by examining simple planar models of
bipedal walking. The models are simple so that we can draw intuition from them without getting
bogged down in the mathematics. We start with a simple inverted pendulum and progress to more
detailed models. By gaining a firm understanding of the dynamics of bipedal walking, we will be
able to better understand why the walking algorithms in Chapters 4 to 8 work.

3.1 Center of Mass and Center of Pressure

Understanding the concepts of center of mass and center of pressure will help us to understand
simple models of bipedal walking.

The center of mass is the distance-weighted average location of the individual mass particles in
the robot:

~Pcom =
∑
i
~Pmimi∑
imi

(3.1)

where ~Pmi is the location of mass particle i, and mi is the mass of particle i.
The center of pressure (Figure 3-1) is the distance-weighted average location of the individual

pressures on the foot:

~Pcop =
∑
i
~Ppipi∑
i pi

(3.2)

Figure 3-1: Picture illustrating the Center of Pressure. The center of pressure (circle) is the distance
weighted average of the pressures on the feet (arrows).
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Figure 3-2: Picture illustrating the similarity between walking and an inverted pendulum. Pendulum
pivot point is placed approximately at the center of pressure on the foot. Pendulum mass is placed
approximately at the center of mass.

where ~Ppi is the location of ground pressure i, and pi is the value of its pressure.
We will show that the dynamics of walking is very similar to the dynamics of an inverted pen-

dulum if the center of mass and the center of pressure are compared to the mass of the pendulum
and the pivot point of the pendulum.

3.2 Inverted Pendulum Models

Figure 3-2 is a picture illustrating the similarity between walking and an inverted pendulum. The
picture was created frame by frame by “eyeballing” video of the author as he walked across the
screen. A pendulum is superimposed on the image with the pivot point placed approximately at the
center of pressure on the foot and the mass of the pendulum placed approximately at the center of
mass of the author. We see that there is much similarity and therefore, understanding the dynamics
of an inverted pendulum will help us understand the dynamics of walking.

Figure 3-3 shows an inverted pendulum of length l with a point mass, m, at its end. It is in a
gravity field and has a frictionless pin joint at its base. The mass corresponds to the body mass of a
bipedal walker and the pendulum to its leg. This is admittedly a limited model of bipedal walking,
yet it can give us insight and is the base of more detailed models.

We know from physical intuition that the pendulum has an equilibrium point in the straight up
position and will accelerate in the direction of whichever side it is on. The further from vertical it
is, the faster it will accelerate. Mathematically, this can be verified by deriving the equations of
motion of the pendulum. To do so, we note that the there is no torque at the pivot joint, so the only
thing affecting the angular momentum about the pivot is the torque due to gravity. The angular
momentum about the pivot is

H0 = ml2θ̇1 (3.3)
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Figure 3-3: Simple pendulum model of bipedal walking during single support. m corresponds to
body mass, l to leg length, and θ1 to stance leg angle.

The change in angular momentum due to gravity is

Ḣ0 = mgl sin θ1 (3.4)

Differentiating H0 and substituting, we get the equations of motion of a pendulum:

θ̈1 =
g

l
sin θ1 (3.5)

The insight we can draw from the inverted pendulum model is as follows. Suppose the mass is
traveling from left to right. If the mass is on the left of the pivot point, it will slow down as it rises,
converting kinetic energy into gravitational potential energy. If it is on the right of the pivot point
it will speed up, converting gravitational potential energy back into kinetic energy.

Now suppose we add a linear actuator along the length of the pendulum, as shown in Figure
3-4. The force on the point mass lies along the length of the leg. The acceleration of the mass
in the radial direction depends on the actuator force, F , the gravitational force, and the fictitious
centrifugal force due to the rotation of the pendulum.

The dynamics in the rotational direction can be computed as above, except this time the deriva-
tive of angular momentum will have an additional term due to the possibility of the length of the
pendulum changing. The linear dynamics can be derived by noting that the forces along the length
of the pendulum include the component due to the actuator (F ), the component due to gravity
(mg cos θ1), and the component due to ficticious centrifical forces (mlθ̇2

1).
The result is that the rotational dynamics of the pendulum are not directly influenced by F .

However, the length and length derivative do play a role:

ml2θ̈1 = mgl sin θ1 − 2mll̇θ̇1 (3.6)

ml̈ = F −mg cos θ1 +mlθ̇1
2

(3.7)

The only effect the leg actuator has on the rotational dynamics is that it can change the pendulum
(leg) length, l and length derivative, l̇. Pulling in the mass will accelerate the rotation while extending
the mass will decelerate it just as it does for a child pulling in or extending their legs while twisting
on a tire swing.

Since only gravity affects the angular momentum, the pendulum is not stabilizable in the upright
position by the actuator. Also, assuming l is restricted to some bound and must always be greater
than zero, the usefulness of moving the mass in and out to control angular rotation of a biped is
limited during normal walking. Thus, the insight of the inverted pendulum extends to the case of
the inverted pendulum with a linear actuator. If the mass is traveling from left to right then it will
slow down if on the left side of the pivot point or speed up if on the right side.
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Figure 3-4: Simple inverted pendulum with linear actuator. The rotational dynamics are indepen-
dent of the actuator force and only depend on g, l, and θ1.

3.3 Multi Joint Pendulum Model

Now suppose instead of a linear actuator we have one or more rotational joints, as in the left side of
Figure 3-5 where we have two actuated joints. We still assume that the only mass is a point mass
at the end of the last link. We can show that the dynamics of this model are identical to those of
the pendulum with a linear actuator (right side of Figure 3-5) provided that the model is not in the
configuration of all joints being straight.

If there is only one actuated joint, then a torque of τ on the model on the left side of Figure
3-5 will result in dynamics identical to applying F = τ

Rlever
to the model on the right side, where

Rlever is the perpendicular lever arm distance from the joint to the line between the point mass and
ground pivot.

With more than one actuated joint, the two systems are still equivalent in the l and θ1 directions.
However, the one on the left has redundant degrees of freedom and thus can take on an infinite
number of configurations for each l and θ1. The equations of motion in the l and θ1 directions are

ml2θ̈1 = mgl sin θ1 − 2mll̇θ̇1 (3.8)
ml̈ = f(τ2, τ3, θ1, θ2, θ3)−mg cos θ1 +mlθ̇2

1 (3.9)

where f is the nonlinear mapping from joint torques to effective force on the point mass along the
direction from the ground pivot to the mass. Note the similarity of these equations and Equations
3.6 and 3.7. The rotational dynamics are still independent of the torques of the actuators and are
only influenced by the indirect changes in l and l̇. Since gravity is still the only force that affects
the angular momentum about the pivot point, the system is still not controllable.

Therefore, the insight of the inverted pendulum extends to this case too. If the mass is traveling
from left to right then it will slow down if on the left side of the pivot point or speed up if on the
right side. It is important to stress that the model has only a single point mass and no inertia
about its center of mass. As we will see when we add inertia to the mass, the radial and rotational
dynamics may become coupled, as the total momentum will include both the momentum of the mass
around the pivot point and the momentum of the inertia about the center of mass. Therefore, the
system will become controllable. First though, we show how a foot and actuated ankle changes the
dynamics such that the system is controllable.

3.4 Adding a Foot

We see that with a point foot (limp pivot about the ground) and a point mass body, the dynamics
of the robot in the rotational direction (θ1) are independent of the robot mechanism and nothing
can be done to control rotational speed. If we add a foot, however, we can apply torques to the
ground, effectively changing the pendulum pivot point, and therefore affect forward speed.

The diagram on the left of Figure 3-6 is a model with actuated ankle and knee joints and a foot.
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Figure 3-5: Multi-joint model with point mass and point foot(left) is equivalent to the linear actuator
model (right) as long as both joints are not straight. Rotational dynamics are independent of actuator
torques (τ2 and τ3) and depend only on g, l, and θ1.
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Figure 3-6: Walking model with point mass body and foot with actuated knee and ankle (left). P is
the location of the center of pressure on the foot. The model with foot is dynamically equivalent to
the inverted pendulum with linear actuator model (right). However, the foot allows us to effectively
change the location of the pendulum pivot point, as long as it stays inside the foot projection.

Point P is the location of the center of pressure on the foot, with Fg being the ground reaction force.
P must lie somewhere on or inside the projection of the foot on the ground. P is the point at which
if the foot was replaced with a point contact with no torque, the dynamics of the system would stay
the same.

We can show that the system on the left of Figure 3-6 is dynamically equivalent to the one on
the right, which has been analyzed above. Its dynamics can still be written as in Equations 3.8 and
3.9. However, now we have the freedom to move the location of the effective point contact with the
ground (center of pressure) as long as we keep it under the foot.

From Equation 3.8, we know that if the center of pressure is to the left of the point mass then
the mass will accelerate to the right. If the center of pressure is to the right of the point mass, then
the mass will accelerate to the left.

We can arbitrarily control the location of the center of pressure through joint torques, as long as
it stays within the projection of the foot. By moving the center of pressure, we have some freedom
to control the rotational dynamics. We can change the rotational velocity and even balance the
point mass over the foot.

3.5 Flywheel Models

In all of the above models, we assumed that the mass was concentrated at a point. Therefore, no
moments could be applied to the mass. To maintain zero torque about the ground pivot (or center
of pressure if a foot was available), the force on the body was constrained to lie along the line joining
the ground pivot and the point mass.

In the model on the left of Figure 3-7, we give inertia J to the mass and put a rotational joint at
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Figure 3-7: Inverted pendulum model with flywheel of mass m and inertia J (left). Applying a
torque of τ2 on the flywheel is equivalent to applying an ankle torque of τ2 on the model in the
middle or an external force of τ2

l on the model on the right.

the center of mass, creating a ”flywheel”. The resulting equations of motion are

ml2θ̈1 = mgl sin θ1 − τ2 (3.10)
Jθ̈b = τ2 (3.11)

where θb is the angle of the flywheel with respect to the ground, θb = θ1 +θ2. In the middle diagram
of Figure 3-7 we remove the flywheel, fixing the inertia to the link and instead have an actuated
ankle with torque τ2. In the diagram on the right we also fix the flywheel but instead apply an
external force of τ2

l from the world to the mass, perpendicularly to the leg.
The inverted pendulum dynamics of all three systems in Figure 3-7 are equivalent, governed by

Equation 3.10. Thus if we ignore θb, the angle of the flywheel on the left, all three systems are
dynamically equivalent.

From the above we see that a flywheel can be used to control the rotational dynamics of an
inverted pendulum. By adding a linear actuator, (Figure 3-8), all three motions of the inertia are
controllable. The equations of motion of the model on the left are

ml2θ̈1 = mgl sin θ1 − 2mll̇θ̇1 − τ2 (3.12)

ml̈ = mlθ̇1
2 −mg cos θ1 + F (3.13)

Jθ̈b = τ2 (3.14)

The schematic on the right of Figure 3-8 shows a free body diagram of the inertia. Fr, F⊥, and
τb are external forces and torques on the body. The two diagrams in Figure 3-8 are dynamically
equivalent if the forces on the free body diagram on the right are

F⊥ =
τ2
l
, Fr = F, τb = τ2 (3.15)

It is important to understand the difference between τb and τ2. τ2 is an internal torque applied
between the pendulum link and the flywheel. τb is an external torque applied between the world and
the flywheel. Applying τ2 between the pendulum link and the flywheel is dynamically equivalent to
applying τb and F⊥ between the world and the flywheel.

Fr can be independently applied, while τb and F⊥ are coupled. This coupling is due to the
requirement that their combined moment about the pendulum pivot point must be zero, τb+F⊥l = 0,
which is also equivalent to saying that the angular momentum about the pivot point is only affected
by gravity.
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Figure 3-8: Inverted pendulum with flywheel and linear actuator (left). Free body diagram (right)
showing external force and torque equivalents. The two systems are dynamically equivalent if F⊥ =
τ2
l , Fr = F , and τb = τ2.
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Figure 3-9: Acrobot model with only one actuated degree of freedom and inertial body. The system
is controllable as hip torque, τ2 affects all three dynamic variables.

3.6 Acrobot Model

In the previous section we saw that a flywheel can be used to arbitrarily control the rotational
motion of an inverted pendulum. Of course, bipeds do not have flywheels on them. Many joints
have range of motion limits which prevent them from spinning up like flywheels. Others joints, such
as shoulders may be used to “windmill” limbs but the maximum rotational speed is quickly achieved.
While it might be interesting to put a flywheel on a bipedal walking robot, we do not consider it
in this thesis as it is biologically implausible. We use the flywheel example only for the basis of
understanding further models.

Now that we understand how flywheel torques can affect the dynamics, we take a step back
and analyze the Acrobot model (Figure 3-9) which gets its name from an acrobat on a high bar.
This model has been used as a demonstration system for many swing and and balancing control
techniques [Spong (1994), Boone (1997)]. The limp pivot joint represents the hands which cannot
apply torque to the bar. The actuated joint represents the shoulder and waist joints which can apply
torque τ2. In our case, the lower limp joint represents point foot contact with the ground, while the
upper joint represents a hip or knee joint.

As long as the actuated joint of the acrobot is bent, the equations of motion are

ml2θ̈1 = mgl sin θ1 − 2mll̇θ̇1 − τ2 (3.16)

ml̈ = mlθ̇1
2 −mg cos θ1 +

τ2
Rlever

(3.17)

Jθ̈b = τ2 (3.18)

where Rlever is the perpendicular lever arm distance from the joint to the line between the center of
mass and ground pivot. On the right of Figure 3-9 is an equivalent free body diagram of the acrobot
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with dynamical equations

ml2θ̈1 = mgl sin θ1 − 2mll̇θ̇1 − lF⊥ (3.19)

ml̈ = mlθ̇1
2 −mg cos θ1 + Fr (3.20)

Jθ̈b = τb (3.21)

where

F⊥ =
τ2
l
, Fr =

τ2
Rlever

, τb = τ2 (3.22)

We see that τ2 affects all three degrees of freedom of the acrobot. Indeed, the acrobot is con-
trollable about its equilibrium positions in which the center of mass lies above the pivot (θ1 = 0).
In order to affect the rotational inverted pendulum dynamics, a torque (τb) must be applied to the
body. This torque effectively creates the perpendicular force on the center of mass (Fperp):

F⊥ =
τb
l

(3.23)

This relationship is a result of the pivot joint having zero torque. Equivalently, we still have the
situation where only gravity affects the angular momentum about the pivot point (Ḣ = mgl sin θ1),
but now the angular momentum includes the momentum of the body about its center of mass, Jθ̈b.

3.7 Massless Leg Biped Model

We are now ready to examine a full, albeit simplified, bipedal model. Figure 3-10 shows a model of
a bipedal walker in the single support phase with massless legs and no swing-leg. The diagram on
the right shows a free body diagram with the equivalent forces and torques on the body inertia.

The equations of motion of the biped are

ml2θ̈1 = mgl sin θ1 − 2mll̇θ̇1 − lF⊥ (3.24)

ml̈ = mlθ̇1
2 −mg cos θ1 + Fr (3.25)

Jθ̈b = τb (3.26)

where

F⊥ = f1(τa, τk, τh, θa, θk, θh), Fr = f2(τa, τk, τh, θa, θk, θh), τb = f3(τa, τk, τh, θa, θk, θh) (3.27)

where f1, f2, f3 are nonlinear mappings from joint torques to forces between the center of pressure
and the center of mass. These mappings are complicated functions, but for now they can be ignored.
What is important is the constraints on τb and F⊥. From previous discussions, we have shown that
Fr can be arbitrarily controlled but that τb and F⊥ are related by

F⊥ =
τb
l

(3.28)

so that the net torque at the center of pressure (point P) is zero. Therefore, if there is a torque on
the body, τb, then there will also be an induced force F⊥ perpendicular to the line from the center
of pressure to the center of mass. We can rewrite Equation 3.24 as
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Figure 3-10: Massless leg biped model (left) and equivalent free body diagram (right). The biped
has body mass m and inertia J . Point P is the location of the center of pressure on the foot. The two
systems are equivalent through a mapping between joint torques and free body forces and moment.
Due to the constraint of zero moment about the center of pressure (also called Zero Moment Point),
we get the constraint on the free body diagram forces of F⊥ = τb

l .

ml2θ̈1 = mgl sin θ1 − 2mll̇θ̇1 − Jθ̈b (3.29)

Examining this equation, we see that there are three ways that we can affect the rotational
dynamics of the biped about its center of pressure. The first and most effective is to change the
location of the center of pressure, P , thereby directly redefining the angle θ1. By moving the center
of pressure, we can control the forward speed, but only to the extent that the center of pressure
remains inside the foot. The second method is to rotationally accelerate the inertia of the body
(pitch forward or backward). The third and least effective is to pull in or push out the mass (change
l).

In normal walking, the body of the robot does not experience significant rotational acceleration
(θ̈b ≈ 0), i.e. F⊥ ≈ 0. Additionally, the length of the leg remains fairly constant (l̇ ≈ 0). Therefore,
the rotational dynamics of the robot about its center of pressure is governed by the pendulum
equation θ̈1 = g

l sin θ1. Thus, changing the effective rotation point of the pendulum dynamics by
moving the location of the center of pressure (point P) is the most effective way to control the
forward velocity of a biped during single support.

3.8 A Word about Singularities

In all of the examples above that compared systems involving rotational actuators with those in-
volving translational actuators (Figures 3-5, 3-6, 3-9, 3-10), there was a caveat: the systems are
equivalent as long as the rotational joints are not straight, thus avoiding singular configurations.
There are many mathematical ways to deal with singularities but for the present purposes we are
trying to understand the various bipedal models. The following will suffice to ensure that all the
previous comparisons are exactly dynamically equivalent.

The model comparisons are all dynamically equivalent, even with the joints straight, provided
that both models retain the restraining structure of the robot. For example, the two bipedal models
in Figure 3-10 are exactly equivalent as long as the model on the right contains the effects of the leg
and foot links. In other words, suppose we add to the robot (left), between the center of pressure
on the foot and the center of mass on the body, an unconstrained three degree of freedom actuation
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system that applies Fr , τb, and F⊥ to the body (with F⊥ = τb
l ). If we keep the leg links (and

their retaining structure) but apply zero torque at each rotational joint, then the two systems will
be exactly dynamically equivalent.

If the leg is straight, then there can be no velocity in the direction of the leg. This is true in
both models. For example, suppose that the center of pressure is at the ankle and the leg is straight.
Then no matter what Fr is in the right diagram of Figure 3-10, it will have no dynamical effect
on the system. If the system was really built, any Fr would simply put an internal load on the leg
links. In fact, the corresponding torques in the left diagram required to achieve any Fr in the right
diagram are all zero in this singular configuration. Mathematically, this corresponds to an infinite
number of solutions for Fr in equation 3.7.

3.9 Planar Biped with Distributed Mass

All of the previous models assumed that the robot had either a point mass or a single inertial
element. Here we consider the effects of distributed mass. The previous analysis dealing with
rotational pendulum dynamics can be summarized by stating that only the torque due to gravity
will affect the angular momentum of the robot about its center of pressure on the foot:

Ḣtot = mgl sin θ1 (3.30)

The angular momentum of the robot consists of the angular momentum of its center of mass
rotating about the center of pressure on its foot plus the angular momentum of internal masses
rotating about the center of mass:

Htot = H0 +Hcm = ml2θ̇1 +Hcm (3.31)

Differentiating, we get

Ḣtot = ml2θ̈1 + 2mll̇θ̇1 + Ḣcm (3.32)

For example, with the model in Figure 3-10, we have Ḣcm = Jθ̈b so that

ml2θ̈1 = mgl sin θ1 − 2mll̇θ̇1 − Jθ̈b (3.33)

Since Jθ̈b = τb = lF⊥, we see that Equation 3.33 is the same as Equation 3.24.
For a biped with distributed mass we have

Hcm =
∑
i

mi(~vi × ~ri) + Jiwi (3.34)

where ~vi is the velocity of the i-th body, ~ri is the vector from the center of mass of the robot to the
i-th body, Ji is the inertia of the i-th body, and wi is the angular velocity of the ith body.

If we ignore gravity, then Htot will be conserved, so that if we change Hcm, then ml2θ̇1 will
change by the same amount in the opposite direction. This is what gives us the freedom to balance
by “throwing mass around”. To understand this more fully, consider the following examples. Figure
3-11 shows a model of a biped with distributed mass. If we pitch the upper torso forward (left),
rotating it in the clockwise direction, then the center of mass will accelerate backward in the counter-
clockwise direction. If we accelerate a leg quickly forward (right), rotating it in the counter-clockwise
direction, then the center of mass will accelerate forward in the clockwise direction.

The ratio between the inertia of the internal body part being accelerated and the inertia of the
biped’s center of mass about the center of pressure will determine how much acceleration occurs.
This ratio is typically less than 1.0 since anything larger would require the body part to extend
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Figure 3-11: Robot model with distributed mass. Rotationally accelerating an internal inertia will
cause an opposite acceleration of the inertia of the center of mass about the center of pressure on
the foot. For example if the robot on the left accelerates its torso by pitching forward, then the
center of mass will accelerate backward. If the robot on the right accelerates its swing-leg forward,
then the center of mass will accelerate forward to conserve angular momentum about the center of
pressure.

out further than the height of the robot or person. This is the case for a tightrope walker with a
balancing bar. The bar can be accelerated in order to balance through restoring accelerations of the
entire tightrope walker about the rope. However, without a balancing bar, the amount a biped can
control rotational dynamics by throwing around its internal mass is limited.

Since the requirements of walking do not allow for arbitrary acceleration of the swing-leg and
torso, we do not use acceleration of internal mass as a control mechanism in this thesis. However,
acceleration of internal mass is probably useful for regaining balance after being pushed during
standing, or when walking without the benefit of feet and actuated ankles. This is evident when
tightrope walkers without a balancing bar lunge to regain balance.

3.10 Summary of Simple Models

The insight from the simple models of this Chapter can be summarized as follows:

• If the momentum of the robot about its center of mass is not changing and the length from
the center of pressure to the center of mass is not changing, then the dynamics of the robot
will obey the simple pendulum dynamics: θ̈1 = g

l sin θ1.

• The center of pressure on the foot can be moved to change the effective pivot point of the
inverted pendulum.

• Changing the momentum of internal inertias in the robot (swinging legs, etc.) will cause an
equal and opposite change in momentum of the center of mass about the effective pivot point
of the inverted pendulum.

Thus, if we are interested in controlling the forward progress of the robot during single support,
there are a few mechanisms we can use. We can directly move the center of pressure on the foot.
Moving it forward will make the robot travel more slowly than it would otherwise. Moving it
backward will increase its speed. We can change the location of the center of mass of the robot. By
leaning forward, the center of mass of the robot will move forward and the robot will move faster
than if the mass was straight up. By leaning backward the robot will slow down. Finally, we can
accelerate internal mass to change the angular acceleration. For example, accelerating the swing-leg
quickly forward will cause the body to accelerate forward.
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The net change in forward velocity over a stride depends on how long the center of mass is in
front of the center of pressure on the foot as opposed to how long it is behind it. Thus we can
also change the speed of the robot over a number of strides, through foot placement, by changing
θ1 between the beginning of the stride and the end. For example, if we want to slow down over a
stride, we can take a long stride length and transition to single support early.

All of the models considered in this chapter were confined to the sagittal plane. However, lateral
balance can be achieved in a similar fashion. Foot placement can be used to initially place the center
of pressure on the foot laterally and ankle torque can be used to move the center of pressure within
the foot. Accelerating the swing-leg laterally can be used to balance when moving the center of
pressure will not suffice.

The simple models in this chapter provide insight into the mechanisms that are useful for dynamic
control of a biped. This insight will be used in Chapter 4 in the formulation of simple control
strategies which are used in the algorithms presented in this thesis.

Understanding the models presented in this chapter not only help us to understand the control
strategies used in future chapters, but also the control strategies that have been discovered that
humans employ. For example, humans seem to use two strategies to regain balance when pushed
during standing [Kuo & Zajac (1993b,a)]. These are referred to as the “ankle strategy”, defined as
acceleration about the ankle joint only, and the “hip strategy” defined as accelerations of the ankle
and hip in opposite directions, with the hip accelerating about three times more than the ankle.
The ankle strategy was found to be favored in response to slow perturbations, while the hip strategy
was found to be favored in response to fast perturbations, or when the center of mass was displaced
beyond the support region of the foot.

These strategies are quite understandable, considering the simple models of walking presented
above. The ankle strategy moves the location of the center of pressure in order to regain balance
while the hip strategy pitches the body inertia in order to make the center of mass accelerate in the
opposite direction. The hip strategy is resorted to when the ankle strategy is not sufficient, due to
the requirement that the center of pressure must stay inside the projection of the foot. With the
robot (Chapter 4), we use the ankle strategy to balance during standing by simply changing the
location of the center of pressure on the foot based on the position and velocity of the body.
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Chapter 4

Exploiting Inherent Robustness

Walking is a moderately easy and inherently robust task. Specific trajectories, precision, and re-
peatability are not important in walking. The resultant motion can vary considerably between
individuals and even in the same individual from step to step. Thus, simple control strategies that
can be explained in simple terms can be used to control bipedal walking robots, despite non-optimal
tracking performance.

Five conditions have to be met for a planar bipedal robot to walk. Height needs to be stabilized.
Pitch needs to be stabilized. Speed has to be stabilized. The swing-leg needs to move so that the
feet are in locations that allow for the stability of height, pitch, and speed. Finally, transitions from
support leg to support leg must occur at appropriate times. If these five objectives are achieved,
then the robot will walk.

The converse is also true. Any controller that results in stable walking must meet these five
objectives. Regardless of the specific control technique, something must act to stabilize height,
pitch, and speed, swing the swing-leg, and transition appropriately from double to single and single
to double support.

A number of different control strategies can be used to achieve each of these five objectives.
Further, each strategy can be implemented in a variety of ways. In this chapter, we present several
strategies for each objective that we have implemented on Spring Flamingo, our bipedal walking
robot. We use the insight gained from the simple physical models presented in Chapter 3 to derive
these strategies. This same insight makes the effectiveness of these strategies apparent. We describe
how these control strategies can be implemented with Virtual Model Control [Pratt et al. (1997)], a
robot control language which appeals to physical intuition.

We introduce a simple technique, called the “virtual toe point” constraint for approximately
controlling the location of the center of pressure on the feet. The virtual toe point is the point
along the foot at which zero torques are commanded. This is similar to a static version of the zero
moment point [Vukobratovic et al. (1990)]. The virtual toe point constraint prevents the foot from
over-rotating due to high ankle torques, while allowing the robot to go up on its toes to get an
extended range of motion from the rear leg. The ability of the robot to go up on its toes allows it
to walk with a straight leg which in turn increases energy efficiency.

We also present a simple scheme for dealing with force distribution between the two legs during
the double support phase of walking. Instead of solving the force distribution problem exactly, we
use a force distribution parameter relating percentage of load on each leg. This parameter can then
be modified for speed control.

Using simple control strategies, the virtual toe point constraint, and the simple force distribution
scheme, we have compelled Spring Flamingo, a seven link planar bipedal robot, to walk. The robot
walks both slowly and quickly, walks over moderate obstacles, starts, and stops. With a few simple
modifications to the algorithm, the robot walks over 15o slopes and rolling terrain. It does this all
blindly, i.e. with no a-priori knowledge of the terrain and no method to sense it except through
contact with the feet.

47



4.1 Control Algorithm Properties

The control algorithms we develop in this chapter and throughout this thesis have the following
properties:

• Simple The control laws employed are typically linear and low order with a few simple terms.

• De-Coupled The control problem is decomposed into the subproblems of height, pitch, speed,
swing leg, and support transitions and independent controllers are developed for each part.

• Physics-Based The control laws and their parameters are physically meaningful and devel-
oped using physical intuition.

• Low Impedance The controllers are made “soft” by using low precision techniques and
keeping control gain parameters low whenever possible. This allows the robot to conform to a
disturbance or uneven terrain.

These control algorithm properties are similar to those used by Raibert and colleagues in their
running robots [Raibert (1986)]. The running problem was decomposed into three parts: height,
balance, and speed. A control rule was developed for each part using physical insight. The resulting
rules are simple and can be described in simple terms: to control height, energy is pumped into the
leg spring when the leg is fully compressed; to control pitch, the body is servoed, using hip torque,
to be level to the ground when the stance leg is compressed; to control speed over a stride, the foot
is placed further forward (to slow down) or further back (to speed up) from the neutral point in
which speed is neither increased or decreased.

For walking, we will use the same decomposition plus explicitly add swing leg control and gait
state transitions, which although were important in the running algorithms, were treated as side
problems. However, since walking is fundamentally a different problem then running, the strategies
and resulting control laws will differ from the running control laws.

Simple, de-coupled, physics-based, low impedance controllers can be powerful, easy to apply, and
provide a high level of insight as to what is really important in the control of a robot. However, these
controllers are often called “ad-hoc” or a “hack” because they are not mathematically based, and
seldom rigorously proven to work. They are often considered to be “cheating” because parameters
are usually hand tuned until desired performance is achieved.

However, use of this style of controller does not preclude mathematical analysis after the controller
is developed. Unfortunately, analysis of legged robots is complicated for several reasons that are
independent of getting a legged robot to perform a task. Automatic synthesis of a controller is
even more difficult than analysis of an existing controller. New analysis and synthesis tools are
being developed by many researchers but for the time being we believe that the limited capability
of modern control theory and analysis should not be used as an excuse for the limited abilities of
modern robots.

It is possible to use adaptive or learning techniques to automatically tune the control parameters.
When the adaptation or learning is complete, it may then be possible to understand what was learned
or why by examining parameters whose effects can be understood. For example, suppose the single
support to double support transition distance parameter is changed by a learning algorithm that is
attempting to maximize efficiency. One may then determine how that parameter affects efficiency.

In the following section we describe strategies based on physical insight that can be used to
control bipedal walking robots. These strategies are easy to understand and easy to apply. Some
of the strategies have been used to successfully compel Spring Flamingo, a planar bipedal robot, to
walk, as described in Section 4.4.

4.2 Simple Control Strategies for Bipedal Walking

We now describe simple control strategies that can be used to achieve the five conditions required
for planar bipedal walking: height stabilization, pitch stabilization, speed stabilization, swing-leg
placement, and support transitions.
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There are a number of methods that can be used to implement the control strategies. These
include inverse kinematics, high gain servos, feed-forward control, impedance control, etc.

We use Virtual Model Control, a tool which relies on physical intuition, to implement the control
strategies. This control technique uses simulations of virtual mechanical components to generate real
actuator torques (or forces). These joint torques create the same effect that the virtual components
would have created, thereby creating the illusion that the simulated components are connected to the
real robot. Such components can include linear or non-linear springs, dampers, dashpots, masses,
latches, bearings, potential and dissipative fields, or any other imaginable component that produces
a force or torque based on its state.

In section 4.4 we discuss how the following control strategies are used to compel Spring Flamingo,
a bipedal walking robot, to walk.

4.2.1 Height Stabilization

Stabilizing height is straightforward provided that a support leg is firmly on the ground. This will
be the case if the swing-leg strategy and support leg strategies are working. There are many ways
in which height can be stabilized. Two strategies are described here.

1. Maintain a constant height above the ground.

2. Maintain a constant stance leg length.

Maintaining a constant height can be implemented with a virtual spring-damper mechanism
attached between the ground and the robot’s body. The spring set point determines the height
above ground that the robot maintains. The damper causes oscillations about that height to decay.
A virtual vertical force of the weight of the body allows for lower virtual spring constants and
decreased offset.

Maintaining a constant stance leg length can be done in a number of different ways. A simple
method that does not require high-gain feedback is to push vertically on the body with a force a
little larger than the weight of the robot. This will cause the robot to increase its height until the
knee hits its joint limit (knee cap).

The first strategy was used to stabilize height in Spring Turkey [Pratt et al. (1997)], our previous
walking robot. We successfully applied both strategies to Spring Flamingo but embraced the second
one because it is much more efficient and more similar to biological walking. By walking with fully
extended legs, there is a low torque requirement on the knee. The robot will walk with somewhat
of a compass gait, in which potential energy and kinetic energy are out of phase and hence total
mechanical energy is nearly constant.

4.2.2 Pitch Stabilization

As in height stabilization, stabilizing pitch is straightforward provided that we have a support leg
firmly on the ground. Two strategies for stabilizing pitch are

1. Maintain a level pitch.

2. Follow a pitch trajectory.

Both strategies require feedback since the center of gravity is above the hip. If it were below
the hip, we could rely on the natural dynamics that would already be stable. To control the pitch,
we use a virtual torsional spring-damper mechanism. If a level pitch trajectory is desired, then the
virtual spring set point is held constant. If a pitch trajectory is desired (perhaps to help control
speed, as described below), then the set point is changed to match the desired pitch position. In
this chapter, we used the level pitch strategy in the control of Spring Flamingo. In Chapter 7, we
modify the desired pitch angle to help control speed.
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4.2.3 Speed Stabilization

For dynamic bipedal walking, it is impossible to arbitrarily control the forward speed during a stride
since the center of mass projection lies outside the support foot polygon during much of the stride.
However, speed can be modified, within limits, during a stride, and can be modified from stride to
stride using discrete control events.

Five strategies for stabilizing speed are

1. Change stride length.
2. Change transition events.
3. Vary the location of the center of pressure on the support foot.
4. Vary force distribution during double support.
5. Change the location of the body center of mass by pitching forward or backward.
6. Vary the amount of push during toe-off.
7. Apply energy at strategic times.

The first two strategies (stride length and transitions) are discrete controllers that will stabilize
the speed over a number of strides. By changing stride lengths and transition events one can change
the fraction of the stride in which the support leg is in front of the body (slowing down the robot)
and the fraction of the stride in which the support leg is behind the body (speeding up the robot).

The third strategy (center of pressure) can be used to control speed during single support. The
center of pressure can be placed forward, closer to the front of the foot, to slow the robot down and
placed backward, closer to the heel, to speed it up. In this chapter we use the virtual toe point to
do this and assume that the virtual toe point and the center of pressure are highly correlated.

The fourth strategy (force distribution) can only be used during double support. More force can
be applied by the rear leg to speed up the robot and more force can be applied by the front leg to
slow down the robot. This changes the effective location of the center of pressure of a virtual leg
between the two real legs (the zero moment point).

The fifth strategy (pitching the body) can be used to speed up the robot by leaning forward or
slow it down by leaning backward. This strategy is typically seen when a person leans forward when
walking up a hill or leans back to brake when going down it.

The sixth strategy (toe-off push) can be used to control speed by varying how much the foot
pushes against the ground during toe-off. Due to the leg being behind the body during toe-off, a
push that effectively lengthens the leg length will propel the body forward, increasing its forward
velocity. Modulation of this push can be used to control velocity.

The seventh strategy (applying energy at strategic times) is a bit trickier to apply. It may be
possible to put energy into the system in one mode during part of the stride and later convert this
energy into forward speed. For example, it may be possible to increase the potential energy of the
system by having the robot go up onto its toes earlier and then convert that energy into forward
kinetic energy during a later portion of the stride.

The first four strategies were used to stabilize Spring Flamingo’s speed. The fifth and sixth
strategies are added in Chapter 7 to achieve fast walking speeds. The last strategy is currently
being investigated.

4.2.4 Swing-Leg Placement

In order to walk successfully, the swing-leg must swing quickly to its next support location. Fortu-
nately, the exact placement is not important when walking on smooth ground.

Two possible strategies for swinging the swing-leg are

1. Servo the swing-leg, either as a function of time, or as a function of the state of the support
leg.

2. Let the swing-leg swing passively, making sure it does not hit the ground.
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Following a swing trajectory can be implemented with a virtual spring-damper mechanism at-
tached between the body and the ankle of the robot. The spring set point can move along the
trajectory, pulling the leg along to follow it.

The natural pendulum dynamics of the swing-leg are exploited in the second strategy. The leg
will naturally swing forward, as long as the foot clears the ground.

In this chapter, the first strategy is successfully applied to Spring Flamingo. In Chapter 5 we
use the passive swing trajectory. In Chapter 7 we achieve fast walking by actively swinging the hip
but letting the knee swing passively during most of the swing phase.

4.2.5 Support Transitions

To continuously walk forward, the support legs must be alternated since a given leg can only support
the body over a small range. For bipedal walking, double support to single support and single support
to double support transitions must occur at appropriate times.

Four strategies for transitioning from double support to single support are

1. Transition to single support if the body is within a certain distance to the next support leg.
2. Transition to single support if the body is over a certain distance away from the previous

support leg.
3. Transition to single support after being in double support for a certain amount of time.
4. Transition to single support when the force on the rear leg falls below a threshold.

These strategies can be implemented by measuring joint angles and transitioning based on joint
angle thresholds or by computing the kinematics of the robot and transitioning on center of mass
to foot distance thresholds. A state machine can be used to keep track of which support state the
robot is in.

The first strategy will ensure that the next support leg will have a long enough support time
that the other leg will be able to swing through in time. The second strategy will ensure that the
rear leg has enough range of motion that the robot does not have to drag its rear leg. The third
strategy simply transitions to single support after a given time. The fourth strategy ensures that
the rear leg is not supporting any load before swinging.

In this chapter, we use the first two strategies together in the control of Spring Flamingo. When
either event happens, the robot transitions to single support.

Two strategies for transitioning from single support to double support are

1. Transition to double support if the body is over a certain distance away from the support leg.

2. Transition to double support if the swing-leg has swung beyond a certain position or has slowed
below a certain speed.

The first strategy ensures that the robot will transition onto a new support leg before the body
moves too far from the current support leg. This will guarantee that the current support leg can
safely support the body and hence stabilize height and pitch.

The second strategy will ensure that the next support leg has swung far enough that it is in a
position to support the body when the time comes. This strategy also maximizes double support
time as the robot will put its swing-foot down as soon as it has swung through rather than wait for
the transition distance event to occur.

In this chapter, we used the first strategy in the control of Spring Flamingo. In Chapter 5, we
use the second strategy, transferring to double support as soon as the swing-leg swings through and
hits the ground.

4.3 Virtual Actuator Implementation for a Planar Biped With
Feet and Ankles

We use Virtual Actuators [Pratt et al. (1996)] and Virtual Model Control [Pratt et al. (1997)], two
techniques based on physical intuition, to implement some of the strategies of the previous section.
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Figure 4-1: Virtual Model implementation on a single leg. Reaction frame {A} is assumed to be in
the same orientation as reference frame {O} so that O

AR = I. For this derivation, we assume the
robot is in the configuration with the knee bent backward. However, the resulting equations hold
whether the knee is bent backward or forward.

In this section we present the mathematics to implement virtual components on Spring Flamingo for
the support leg in single support and both legs in double support, following the procedure described
in [Pratt et al. (1996)].

4.3.1 Single Leg Implementation

Figure 4-1 shows a simple planar, five link, four joint, serial robot model that we use to represent a
single leg of our walking robot. The toe joint and link do not exist on the real robot (Figure 4-2).
They are used to represent the point on the foot at which no torque is applied. We refer to this
as the “virtual toe point”. It is similar to the center of pressure on the foot or the zero moment
point [Vukobratovic et al. (1990)] except that it is a commanded quantity, not a measured one, and
is based on static, not dynamic, considerations.

The virtual toe point can be used for control in the following intuitive sense. If it is desired to
accelerate the robot backward (or reduce the forward acceleration) one can move the virtual toe
point forward on the foot. Similarly, if it is desired to accelerate the robot forward (or reduce the
backward acceleration) one can move the virtual toe point backward toward the heel.

We wish to connect a virtual component between the virtual toe point frame, {A}, and the body
frame, {B}. The angles θt, θa, θk, and θh are those of the virtual toe, ankle, knee, and hip. The
upper link (femur) is of length L2, the lower link (tibia) is of length L1, and the height of the foot is
Lh. We assume that the virtual toe is flat on the ground, so that OAR = I. The commanded distance
to the virtual toe point from the ankle is Lvtp.

The forward kinematic map from frame {A} to frame {B} is as follows,

A
B
~X =


x

z

θ

 =


−Lvtp ct − Lh st − L1 st+a − L2 st+a+k

−Lvtp st + Lh ct + L1 ct+a + L2 ct+a+k

−θh − θk − θa − θt

 (4.1)
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where ca ≡ cos(θa), sa ≡ sin(θa), etc. Partial differentiation with respect to the joint angles
produces the Jacobian,

A
BJ =


J1,1 J1,2 J1,3 0

J2,1 J2,2 J2,3 0

−1 −1 −1 −1

 (4.2)

where,

J1,3 = −L2 ct+a+k

J1,2 = J1,3 − L1 ct+a

J1,1 = J1,2 + Lvtp st − Lh ct

J2,3 = −L2 st+a+k

J2,2 = J2,3 − L1 st+a

J2,1 = J2,2 − Lvtp ct − Lh st

The Jacobian relates the virtual velocity between frames A and B to the joint velocities

A
B
~̇X =A

B J ~̇Θ (4.3)

and the virtual force to joint torque,

~τ = (ABJ)T (AB ~F ) (4.4)

where ~τ is the joint torque vector and ~F is the virtual force vector.
Next we add the constraint of an unactuated toe, τt = 0, since we desire zero actuated torque

about the virtual toe point. This will constrain the direction in which virtual forces can be applied.
With the virtual toe point constraint, Equation 4.4 is,

 0
τa
τk
τh

 =


J1,1 J2,1 −1

J1,2 J2,2 −1

J1,3 J2,3 −1

0 0 −1


 fxfz
fθ

 (4.5)

The control strategies described previously control height by applying vertical force and control
pitch by applying torque to the body. Forward speed is indirectly controlled by varying the location
of the center of pressure and the center of mass and by stride length and toe-off force. Since we are
more concerned about applying forces in the vertical direction and torques about the body than we
are concerned about applying horizontal forces we specify fz and fθ and solve for fx
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fx =
[
−J2,1
J1,1

1
J1,1

] [ fz

fθ

]
(4.6)

Plugging equation 4.6 back into equation 4.5, we get


τa

τk

τh

 =


−J1,2J2,1
J1,1

+ J2,2
J1,2
J1,1
− 1

−J1,3J2,1
J1,1

+ J2,3
J1,3
J1,1
− 1

0 −1


[
fz

fθ

]
(4.7)

Throughout the above derivation we have assumed that the toe is flat on the ground and that
we can measure all angles. Because there is no toe (it is virtual) we cannot measure its angle with
the ground. Instead we measure the body angle via a potentiometer on a boom or a gyroscope and
compute what the toe angle would be if the toe was flat on the ground,

θt = −θ − θh − θk − θa (4.8)

We now have a simple set of equations for determining joint torques given virtual forces. These
equations will be used in the next section in the control of a bipedal walking robot during the single
support phase.

4.3.2 Dual Leg Implementation

In the previous subsection we discussed virtual actuator implementation for a single leg (when the
robot is in single support). Here we examine the double support case.

As in [Pratt et al. (1996)] we could construct a constraint matrix and solve exactly for the
force distribution between the two legs such that any arbitrary Fx, Fz , Fθ force vector could be
commanded. However, we decide to use a simpler method because

• There is no solution when the feet are together, as the constraint matrix is not invertible in
such a configuration.
• It is unlikely that biological creatures solve the force distribution problem exactly.
• Solving the force distribution problem exactly is unnecessary.
• The method presented below appeals more to intuition.

Instead of solving the force distribution problem exactly we simply distribute the force between
the two legs with a force distribution parameter, α, such that,

[
fz

fθ

]
left

= α

[
Fz

Fθ

]
,

[
fz

fθ

]
right

= (1− α)

[
Fz

Fθ

]
(4.9)

where 0 ≤ α ≤ 1
As in the single support case, we do not command forces in the x direction. Instead we command

forces in the z and θ directions, decide the force distribution between the two legs, and solve for the
joint torques using Equation 4.7 for each leg.

We choose α such that the forces are divided between the legs in a natural way. If the robot’s
body is directly above the left leg, all forces are provided by the left leg (α = 1). Similarly, if the
robot’s body is directly above the right leg, all forces will be provided by the right leg (α = 0). If the
robot’s body is between the left and right legs, the forces will be divided with a linear relationship
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Figure 4-2: Spring Flamingo, a planar bipedal walking robot. There are six force controlled actuators
attached to the body. Power is transmitted to the hips, knees, and ankles via cables. A boom
prevents motion in the lateral, roll, and yaw directions. However, the boom does not support the
robot in the sagittal plane.

α =
xright

xleft + xright
(4.10)

where xleft ≥ 0 is the horizontal distance from the left leg to the body and xright ≥ 0 is the
horizontal distance from the right leg to the body. If the legs are both close together, it is very much
like the single support case and we simply set α = 0.5, dividing the forces evenly between the two
legs.

We can modify the force distribution parameter α for control in the following way. To accelerate
forward, we put more of the force distribution on the rear leg. To accelerate backward, we put
more of the force distribution on the front leg. For example we can use the simple control law
α = α0 + b(ẋd − ẋ) to help regulate velocity when the left leg is the rear leg.

In the next section we will use this control strategy to help regulate forward velocity during
double support.

4.4 Simple Control Strategies Applied to a Bipedal Walking
Robot

Figure 4-2 is a photograph of Spring Flamingo, a planar bipedal walking robot. The robot has an
actuated hip, knee, and ankle on each leg. An unactuated boom constrains Spring Flamingo’s roll,
yaw, and lateral motion, thereby reducing it to a planar robot. All of Spring Flamingo’s motors
are located in its upper body, with power being transmitted to the joints via cable drives. Series
Elastic Actuation [Pratt & Williamson (1995)] is employed at each degree of freedom, allowing for
accurate application of torques and a high degree of shock tolerance. The maximum torque that
can be applied to the hips and ankles is approximately 18 Nm, while approximately 24 Nm can
be applied to the knees. The force control bandwidth we achieve is approximately 15 Hz. Spring
Flamingo weighs approximately 30 lbs (14 kg) and stands 3 ft (1 m) tall from floor to hip.
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Figure 4-3: real State machine used in Spring Flamingo’s walking algorithm.

Potentiometers at the hips, knees, ankles, and boom measure joint angles and body pitch. Com-
pression springs are used in the joint actuators to implement Series Elastic Actuation. Linear
potentiometers measure the stretch in the springs.

4.4.1 Walking Algorithm

The simple control strategies used on Spring Flamingo are:

• Maintain a constant stance leg length by pushing up until hitting the knee cap.
• Maintain a constant level pitch using a virtual spring damper mechanism with constant set

point.
• Transition from double support to single support when the body’s forward position becomes

further than a prespecified distance from the rear foot or closer than a prespecified distance
from the front foot.
• Transition from single support to double support when the body’s forward position becomes

further than a certain distance from the support foot.
• Swing the non-stance leg such that the foot is roughly placed a desired stride length away from

the support foot.
• Increase the nominal stride length as the robot walks faster.
• Delay transition to double support if the robot is walking too slowly. Conversely, initiate

transition to double support sooner if the robot is walking too quickly.
• Maintain the center of pressure of the support foot approximately below the center of mass,

moving it forward if walking too quickly or backward if walking too slowly.
• During double support shift the load towards the back leg if walking too slowly or towards the

front leg if walking too quickly.

To implement Spring Flamingo’s walking algorithm, we use a simple set of virtual components
and a state machine shown in Figure 4-3. The various virtual spring, damper, and force variables
and walking parameters are chosen using physical insight and a manual search. For example, the
virtual spring-damper for pitch control is
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Table 4.1: real Control Parameters for Spring Flamingo’s Walking Algorithm. The listed range
is the reasonable amount that the parameters can vary by while the robot remains well-behaved.

Parameter Value Range

Height Control
Virtual Z Anti-Gravity Force 110 N 90-120

Virtual Z Damper 200 N
m/s 100-250

Pitch Control
Virtual Pitch Spring 60Nmrad 30-80

Virtual Pitch Damper 10 Nm
rad/s 4-15

Forward Speed Control
Nominal Velocity 0.4ms 0.0-0.7

Virtual Toe Point Gain 0.3 m
m/s 0.0-0.5

Double Support Transfer
Ratio Gain 0.3 %

m/s 0.0-1.5
Double to Single Support
Transition Distance Gain 0.3 m

m/s 0.0-0.5
Single to Double Support
Transition Distance Gain 0.3 m

m/s 0.0-0.5

Swing-Leg Control
Virtual Swing-Leg X Spring 25Nm 10-40

Virtual Swing-Leg X Damper 3 N
m/s 1-5

Virtual Swing-Leg Z Spring 150Nm 100-200
Virtual Swing-Leg Z Damper 8 N

m/s 2-14

Support Transitions
Double to Single Support

Rear Leg Transition Distance 0.26m 0.20-0.30
Double to Single Support

Front Leg Transition Distance 0.05m 0.01-0.10
Single to Double Support

Transition Distance 0.16m 0.10-0.24
Nominal Stride Length 0.36m 0.24-0.42
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τb = Kpitch(θd − θ) −Bpitchθ̇ (4.11)

where τb is the torque on the body through the stance leg, θ is the body lean angle, θd is the virtual
spring set-point, Kpitch is the virtual spring stiffness, and Bpitch is the virtual damper parameter.
We manually tune Kpitch and Bpitch until the amount the robot resists body twist and the rate at
which oscillations die out is acceptable.

The algorithm control parameters are listed in Table 4.1 along with their tuned values and
reasonable ranges. This range represents the reasonable amount that the parameter can vary by while
the robot remains well-behaved. For some parameters, the robot can continue to walk throughout
this range. For others, the robot cannot walk if the parameter is near the boundaries of the range.
All the parameters can be varied, one at a time, by at least 10% or all at once by 5% without
disrupting stable walking.

The vertical force to control height is calculated to be a little larger than the weight of the robot.
Many parameters are tuned by physically examining their effects (resistance to being pushed on,
decay rate, etc.) until the desired effects are achieved and the robot walks successfully. These walking
parameters consist of nominal stride length, transition distances, swing-leg gains, and velocity gains
on the transition distances, stride length, virtual toe points, and double support loading ratio. From
the time the robot was built until the moment it could continuously walk, approximately 40 iterations
were performed over a span of 3 weeks.

Spring Flamingo is initialized balancing with its feet together. It starts walking by lifting up one
leg and transitioning into the single support phase. At no time is external intervention required.
The robot stops by setting its desired velocity to zero after walking a given distance.

Figure 4-4 shows experimental data from Spring Flamingo while walking. The graphs on the left
show (from top to bottom) the body’s horizontal position (x), horizontal velocity, and state. The
graphs on the right show the body’s vertical position (z), pitch (θ), and the mechanical power being
exerted at the joints. The mechanical power is computed as the sum of the absolute value of the
torque times angular velocity at each joint.

Spring Flamingo walked continuously at approximately 0.6 m/s. The data shows approximately
10 steps (left to right or right to left support transitions) in 8 sec, giving a step time of 0.8 seconds.
The height fluctuated about 3 cm as the robot walked using a compass-like gait. The pitch was
confined to ±0.04 radians (±2.1 deg). The mechanical power averaged about 15 Watts. However,
due to the inefficiencies of the motors, transmissions, and power electronics, the electrical power
consumed was much higher. In fact, the power measured from the wall outlet in which the robot
was attached was about 200 Watts!.

The data in Figure 4-4 is plotted in graphical form in Figure 4-5. The snapshots in Figure 4-5
are approximately 0.5 seconds apart. Lines are drawn to show the path of the tips of the feet and
the hip trajectory.

4.4.2 Robustness of Walking Algorithm

The walking control algorithm discussed above is robust to moderate external forces, rough terrain,
and parameter variation. Spring Flamingo can be pushed fairly hard in either direction, temporarily
changing its speed by about 25%, recovering to the original speed within a few steps. The robot
can walk up and down slopes of approximately 50 without any change in the algorithm and without
being informed of (or detecting) the presence of the slope. Each of the control parameters can be
changed by 10% or more while still maintaining stable walking.

The most common failure mode occurs when the robot is pushed forward too hard and cannot
recover. The robot will typically take several short, choppy steps further increasing its speed and
finally falling. A biological creature in this situation typically recovers by running a few steps and
slowing down. By running, the animal benefits from an ariel phase which provides more time to
swing a leg through to a position that allows recovery. Unfortunately, Spring Flamingo cannot run
and hence has no recourse when its speed increases above its natural walk-to-run transition speed.
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Figure 4-4: real Spring Flamingo walking data. Left graphs display, from top to bottom the
horizontal position (x) and horizontal velocity of the body and the state of the state machine. Right
graphs display the vertical position (z) and pitch (θ) of the body and mechanical power being applied
to the joints.

Figure 4-5: real Elapsed time snapshot of the Spring Flamingo walking data in Figure 6. The
drawings of the robot are spaced approximately 0.5 seconds apart. The left leg is dotted while the
right leg is solid. Lines show the path of the tips of the feet and the hip trajectory. The robot walks
from left to right.
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4.4.3 Self-Stabilizing Speed

The above algorithm used several controllers to stabilize speed. In another algorithm, we successfully
compelled Spring Flamingo to walk stably without any feedback on the forward speed. We used
the speed control strategy “Take longer strides as the robot walks faster” but we never explicitly
programmed it. Instead, we used low gains on the swing-leg such that overshoot was significant and
the natural dynamics of the system played a large role in where the leg was placed. As the robot
walked faster it naturally took longer strides without explicitly being told to. The speed-dependent
stride lengths then self-stabilized the forward walking speed.

With this self-stabilizing speed algorithm, the robot walked continuously while being robust to
external pushes. However, we could only get this algorithm to work for slow speed walking. In
Chapter 5 we describe how we were able to get the robot to walk 0.5ms without explicit speed
control.

4.5 Blind Walking over Hills and Rolling Terrain

Simple control strategies which appeal to physical intuition can be used to control a biped to walk
over moderate hills and rolling terrain. In this section we describe how we extended the above
algorithm to control Spring Flamingo to walk over a 15o ramp and rolling terrain consisting of
alternating 15o uphills and downhills.

No sensors were added to the robot and prior information about the slope was not used in
controlling the robot. Detecting and measuring the slopes was achieved entirely through the feet.
Therefore, we refer to this as blind walking.

4.5.1 Estimating the Slope of Hills

There are two ways to estimate the ground slope through the kinematics of the robot. The first,
which we call the local slope, is the angle that the foot makes, with respect to horizontal, when it is
flat on the ground. The second, which we call the global slope, is the slope of the line connecting the
two ankles during double support. Figure 4-6 shows graphically the definition of local and global
slope. This means of slope estimation is the same as that used in [Chew et al. (1999)].

The local slope and the global slope are not equal in general, and in fact may even have differing
signs, for example when transitioning from uphill to downhill. The global slope seems to be a better
estimate of the real slope of the hill since it takes into consideration more distance. However, it
can only be measured during double support. The local slope has a predictive quality when walking
over smooth terrain in which the slope does not change drastically such as those considered here.
Here we simply use the average of the local and global slope for the estimation of the ground slope.
During single support we use the global slope estimated during the previous double support phase.

4.5.2 Simple Control Strategies for Hills

The following simple control strategies are added to the flat ground algorithm to control the robot
to walk over rough terrain:

• Increase desired velocity when going uphill and decrease it when going downhill.

• Lean forward when walking uphill, lean backward when walking downhill.

• Put weight more on the toes when walking uphill.

• Bend the support knee when going downhill to help the swing-leg hit the ground.

• Lift leg higher when going uphill to prevent stubbing a toe.
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local slope

global slope

Figure 4-6: Graphical definition of global slope and local slope. In general, the global and local
slopes will be different. The global slope may be a better estimate, but the local slope has predictive
qualities for smoothly rolling terrain.

Table 4.2: real Additional parameters for Spring Flamingo’s walking algorithm over rough terrain.

Parameter Value

Desired Velocity Multiplier 0.7m/srad

Desired Pitch Multiplier 0.15 radrad
Virtual Toe Point Multiplier 0.125 m

rad

Desired Knee Bend Rate 5.0 radsec

The first four of these strategies use the parameters listed in Table 4.2 to modulate the parameters
used in the flat terrain algorithm.

Changing the desired velocity is an easy way to effectively alter a number of other parameters at
the same time. This results in the robot putting more effort into walking uphill and resist speeding
up while going downhill. We do this with the desired velocity multiplier, such that the desired
velocity is what it would be in the flat ground algorithm plus the desired velocity multiplier times
the estimated slope of the ground.

Previously we discussed how body lean can be used to speed up or slow down. Here we increase
desired pitch to lean into the hill and decrease it to lean back when going down a hill with the
desired pitch multiplier. This parameter augments the desired velocity multiplier. Both parameters
were tuned so that the robot didn’t change its speed between uphill, downhill, and flat terrain.

Putting weight more forward on the toes when walking uphill was found to be useful in order to
get the robot to go onto its toes when walking uphill. The virtual toe point multiplier changes the
location of the virtual toe point depending on the estimated slope. This parameter was tuned such
that the robot toed-off more naturally when walking uphill.

When going downhill cautiously, one bends their support leg in order to lower their swing-leg
to the level of the ground. To achieve this effect with the robot, we have the support knee servo
down starting when the body passes over the support ankle. The desired knee angle decreases at
the desired knee bend rate until the swing-leg hits the ground.

When going uphill, the swing-leg must be lifted higher to prevent stubbing the toe. The desired
height of the swing-leg is simply increased such that it will be at the proper height at touchdown
assuming the estimated slope is correct. To prevent toe-stubbing when the estimated slope is not
correct, we simply increased the desired swing height for flat terrain.
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Figure 4-7: real Photograph of Spring Flamingo walking over a ramp with 15o upslope and
downslope. The robot uses only its feet to detect the terrain. While the boom constrains the robot
to the sagittal plane, it does not support it in that plane.

4.5.3 Results on Hills

Figure 4-7 shows Spring Flamingo walking over a ramp that starts with a 15o upslope, goes flat, and
then has a 15o downslope. Data are plotted in Figure 4-8. The robot walks approximately 0.35ms .
The body pitch increases when going uphill and decreases when going downhill, showing that the
strategy of bending forward or backward depending on the slope is in effect. The estimated slope
has errors but still accurately tracks the general uphill and downhill progression. The mechanical
power jumps to about 25W when walking uphill and downhill with a peak power of approximately
50W . It falls back to about 15W average when the hill flattens. This is expected as the joints must
supply positive work to increase potential energy when walking uphill and must absorb negative
work to decrease potential energy when walking downhill.

Figure 4-9 shows video frames of Spring Flamingo walking over rolling terrain consisting of
alternating 15o upslopes and downslopes. With the algorithm described above, the robot successfully
traversed this terrain. On a typical day, the robot could traverse the terrain over 20 times without
falling.

4.6 Conclusions

Spring Flamingo walked continuously using a simple set of control strategies that were developed
using physical insight and intuition. These strategies are easy to develop, are easy to understand,
and are easy to implement. In short, planar bipedal walking is easy to achieve despite it being
difficult to synthesize a controller mathematically.

By tuning the control parameters by hand, one gains insight into how the parameters relate to
the resultant walking. This insight helps speed up the tuning process and suggests control algorithm
improvements.

Spring Flamingo gained several advantages over Spring Turkey [Pratt et al. (1997)] by the use
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Figure 4-8: real Spring Flamingo walking data while walking over a 15o ramp.

Figure 4-9: real Video frames of Spring Flamingo walking over rolling terrain with 15o upslopes
and downslopes. Frames proceed left to right with 0.5 seconds between frames.
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of feet and actuated ankles. Since Spring Turkey had only point feet, it could not balance on one
foot, had to walk with bent knees, and had large velocity fluctuations during each stride. Spring
Flamingo exhibits smaller velocity fluctuations as it keeps its virtual toe point directly underneath
when the center of mass passes over the support foot. It walks more efficiently as a compass gait
with straight legs can be used without the worry of losing range of motion on the rear leg. Also,
with feet and ankles, the robot is able to stand and balance on one leg, which was not presented in
this thesis.

Stable, robust, and efficient planar bipedal walking can be achieved with simple control strategies
and simple control techniques. Spring Flamingo walked over moderate slopes with no change to its
level ground algorithm. For steeper slopes, five simple control strategies were used. Four of these
strategies simply modified a parameter of the flat terrain algorithm proportionately to the estimated
slope. The other strategy was to bend the support leg when going downhill in order to get the swing-
leg to reach the ground.

In the next chapter we show how natural dynamic mechanisms can be used to simplify the control
further. One of the mechanisms, knee limits, aided in making height control of the algorithms
discussed in this chapter simpler. The next chapter will discuss the benefits more fully.
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Chapter 5

Exploiting Natural Dynamics

A powerful practice in machine design is to make use of natural dynamics that make control simpler
and more efficient. For example, most planes are designed to have wings so that they naturally
fly stably, requiring only a simple power source and simple control. Early locomotives used fly-
ball governors, a mechanical feedback device, to help maintain constant speed. Throttles naturally
govern speed without explicit feedback. Satellites and rifle bullets spin to stabilize their trajectory.

Animals have evolved similar mechanisms that exploit natural dynamics. Birds have wings which
allow for stable gliding. Fish have hydro-dynamically stable shapes and are neutrally buoyant.
Running animals have springy legs. And walking animals have knee limits, compliant ankles, and
legs that swing passively.

Many researchers [Goswami et al. (1997), McGeer (1990a), Garcia et al. (1998), Adolfsson et al.
(1998), Fowble & Kuo (1996)], starting with McGeer and his passive dynamic walker, have exploited
natural dynamics in order to make walking machines that are fully passive. These devices rely
completely on their dynamics and interaction with gravity in order to walk.

Passive walkers have limitations, of course, such as the need to walk down a slope and the
inability to control speed. Powered robots [Hirai et al. (1998), Raibert (1986), Pratt & Pratt
(1998b), Pratt et al. (1997), Dunn & Howe (1996), Kajita & K.Tani (1996), Kun & Miller (1996),
Miura & Shimoyama (1984), Yamaguchi et al. (1994), Yi & Zheng (1996)] can avoid these limitations.
However, the control of powered bipedal robots has often been very complicated and the resultant
motion often looks unnatural and is inefficient. Many of the controllers for powered robots are model
based, requiring an accurate model of the dynamics of the robot and often an accurate model of
the environment in order to work. Several of the robots use trajectory tracking approaches which
require pre-specified trajectories of either the body or the joints themselves.

In this chapter, we describe an approach to powered bipedal walking which exploits the natural
dynamics of the robot and requires only simple control. We exploit three different natural mecha-
nisms. We use a knee-cap to prevent the leg from inverting, which makes control of height easy. We
use a compliant ankle limit so that the center of pressure on the foot travels forward with the center
of mass of the body. And we exploit the natural swing dynamics of the leg to make swing control
simpler and natural looking. This approach was used to control Spring Flamingo, as described
below. The robots walk fairly naturally and efficiently.

5.1 Natural Dynamic Mechanisms

5.1.1 Knee Cap

Walking with straight support legs is more efficient than with bent legs since energy requirements in
muscles and motors are monotonically related to the torque at the joint, even if there is no velocity.
However, since the leg must support the weight of the body, a straight leg poses an interesting
challenge. Figure 5-1 illustrates the issue. When the body is directly over the foot (A), no torque
is required at the knee. However, this is an unstable latch configuration. If the knee moves slightly
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T

A B C D

Figure 5-1: Diagram illustrating kneecap advantages. Without a kneecap, a biped with a straight
support leg is in an unstable buckling configuration (A). Feedback control may result in chatter
between knee inflections B and C due to delay, etc. With a kneecap (D), a constant torque with no
feedback is enough to stablize the system against buckling.

A B C D

Figure 5-2: Diagram illustrating compliant ankle. In normal walking, the center of pressure on the
foot travels forward as the center of mass travels forward (A-D). A compliant ankle (insert) can
naturally achieve this effect. However, energy injection at toe off requires actuation.

either way, the leg will buckle (B or C). It is challenging to control this situation. Due to controller
non-idealities (bandwidth limitation, delays, etc.) a straight knee controller will typically exhibit
chatter between configurations B and C. This is similar to the challenges encountered in haptic
devices when trying to simulate a hard surface such as a wall. We want the knee to straighten
quickly, but then stop abruptly as though it hit a virtual limit stop. Instead of simulating a virtual
limit stop, however, it is easier, more efficient, and more stable to simply have a real limit stop.

We add a knee cap (D) to simplify the control and make the resultant motion smoother and more
efficient. In nature, this role is filled by ligaments which prevent the knee from inverting. With a
knee limit, a very simple control technique to keep the leg straight is to apply a constant torque
so that the knee pushes against the stop. Of course other techniques can be used. Also, if the line
of force between the center of mass and the center of pressure on the foot passes in front of the
kneecap, the knee will naturally be locked against the kneecap without any actuator torque.

5.1.2 Compliant Ankle

Feet and ankles provide many benefits to bipedal walking. They reduce velocity fluctuations since
the center of pressure on the foot can travel forward, staying below the center of mass of the body.
They also help to control speed and to inject energy at the end of the stride through toe off.

66



DCBA

Figure 5-3: Diagram illustrating passive swing. Swing is initiated (A) through a forward torque
on the hip, supplied either by hip actuators or gravity. The leg can swing passively (B - C) until
swing is stopped (D) through a backward torque on the hip, again supplied either by hip actuators
or gravity.

The torque at the ankle can be controlled actively. However, torque requirements can be quite
high, since the foot provides a significant lever arm when the center of pressure is near the toe. A
compliant ankle provides most of the benefits of a foot and ankle but without the torque require-
ments. An actuator can then be used in addition to the passive ankle for fine control and energy
injection at toe off. Figure 5-2 illustrates the situation. In configuration A, the center of mass is
behind the foot and there is zero ankle torque. In configurations B and C, the center of mass is
traveling forward. The ankle torque increases, thereby moving the center of pressure of the foot
forward from the heel to the toe. In configuration D, the robot goes into toe off, releasing the
energy stored in configurations B and C and perhaps injecting some more, through active torques,
to maintain walking. The inset shows a simple spring configuration which can give the ankle the
desired compliance.

Choosing an adequate spring torque versus displacement curve is important in order to make
the center of pressure start moving forward at the desired instance and at the desired rate. In
the simulation discussed below we use a quadratic spring (τ = k(θ − θ0)2) and tune the stiffness
parameter. For the robot we use a rubber stop and adjust the position of the stop for best results.

5.1.3 Passive Swing-Leg

In our previous algorithm for Spring Flamingo, described in Chapter 4 [Pratt & Pratt (1998b)], as
with most powered bipedal walkers, we used control techniques similar to those used for robotic arms
to control the swing-leg along a trajectory to a desired landing position. However, with a suitable
leg, the natural swing dynamics are such that once the swing starts, the leg will continue without
any intervention, as illustrated in Figure 5-3. Gravity alone can be used to initiate swing, as in the
case of the passive dynamic walkers. Hip torque can be added in order to make the leg swing faster
as in animals.

We use the passive swing properties of the leg in the control of our simulation and robot. In
both cases, the hip is servoed forward to a desired angle and the knee is allowed to swing freely. At
the end of the swing, moderate damping is added to the knee to prevent it from banging into the
knee cap and finally it is locked once it hits the knee cap.

In order for the natural swing property to exist on Spring Flamingo, we had to invert the direction
of knee bend. Previously, the robot had a backward bent joint, meant to model the ankle of a bird.
However, the robot did not have the joint corresponding to a birds knee. By giving the robot a
human style leg configuration, it obtains passive swing characteristics.

In the next sections, we describe algorithms which exploit the three natural mechanisms, de-
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Hip: Servo to angle
Knee: Lock
Ankle: Servo foot level
              to ground

Hip: Servo pitch
Knee: Lock
Ankle: Elastic + push

Hip: Servo Pitch
Knee: Lock
Ankle: Elastic

Hip: Servo to angle

Ankle: Servo foot level
Knee: Passive swing

              to ground

Heel hits ground Heel lifts off ground

Foot force below thresholdSwing time passes Swing
(2)

Toe Off
(1)

Straighten
(3)

Support
(0)

Algorithm
Simulation

Figure 5-4: sim Simulation Algorithm. Each leg has a state machine which is in one of four states.
State transition conditions and actions in each state are shown.

scribed above, in the control of a simulated and a physical bipedal robot.

5.2 Simulation Algorithm

We use the natural dynamic mechanisms described above in the control of a simulated seven link
bipedal robot. The simulation has an actuated hip, knee, and ankle on each leg. It is confined to
walk in the sagittal plane. The simulation parameters are listed in Table 5.1. Moments of inertia
are measured about the center of mass. The center of mass of each leg link is approximately in the
center of the link.

The simulation algorithm is summarized in Figure 5-4. Each leg acts separately and has a simple
state machine. The leg can be in either Support, Toe Off, Swing, or Straighten states. In Support
and Toe Off states, the hip is used to servo body pitch to maintain balance and the knee is locked
to maintain height. In Support state, the ankle is unactuated - only the passive ankle compliance
is present. During Toe Off state, the ankle is servoed to an angle using a Proportional-Derivative
(PD) controller in addition to its passive compliance. The transition from Support to Toe Off occurs
when the heel lifts off the ground due to the passive compliance of the ankle.

The robot transitions from Toe Off to Swing when the force on the foot falls below a certain
threshold. In both Swing and Straighten states the hip is servoed to an angle using a PD controller
and the foot is servoed to be level with the ground so that the robot does not stub its toe. In Swing
state, the knee is damped while in Straighten state the knee is locked straight using a PD controller.

The robot transitions from Swing to Straighten state after a constant amount of time passes.
Finally, the robot transitions from Straighten to Support state when the heel of the swing-leg hits
the ground.

The simulation parameters were first manually tuned, and then fine tuned using a genetic algo-
rithm with efficiency as its cost function. Efficiency was computed as distance traveled divided by
total joint energy after ten seconds of walking. Total joint energy was computed by integrating the
total joint power which is the sum of the absolute values of the mechanical power at each joint:
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Table 5.1: sim Physical parameters and controller parameters of the simulated planar bipedal
walker. The controller parameters were tuned both manually and with a genetic algorithm.

Physical Parameter Value Controller Parameter Manual GA
Total mass 14.2 kg hip swing angle 0.5 rad 0.56
Body mass 12.0 kg hip gain 15.0 12.9

Hip to body center of mass 0.20 m hip damp 1.0 1.76
Body moment of inertia 0.10 kg m2 hip hold angle 0.35 0.40

Upper leg mass 0.46 kg knee lock gain 1.0 0.68
Upper leg moment of inertia 0.13 kg m2 knee damping 0.5 0.68

Upper leg length 0.42 m foot force threshold 20.0 22.5
Lower leg mass 0.31 kg swing time 0.4 0.45

Lower leg moment of inertia 0.0095 kg m2 ankle push gain 4.0 5.07
Lower leg length 0.42 m ankle compliance 1000 384

Foot mass 0.35 kg pitch gain 100 (same)
Foot moment of inertia 0.0014 kg m2 pitch damp 20 (same)

Foot height 0.04 m knee stance gain 30 (same)
Foot length forward 0.17 knee stance damp 10 (same)

Foot length back 0.06

Etot =
∫
Ptot dt, Ptot =

∑
joints

|Pjoint|, Pjoint = τjoint θ̇joint (5.1)

After a couple generations, naturally looking simulations resulted. Some of them achieved a
smooth transfer of support by coordinating toe off and heel strike. One of those solutions was
chosen to be presented here as it appeared quite natural. A time elapsed animation is shown in
Figure 5-5. The drawings on the left show the swing phase of one leg. The drawings on the right
show several steps. The right leg is dotted while the left leg is solid. Lines show the path of the
tips of the feet and the hip trajectory. Several variables are plotted graphically in Figure 5-6. In the
first row, left to right, are the state of the left leg (solid) and right leg (dotted), forward distance
traveled (x), and velocity. In the second row are total power, body height, and pitch. In the last
row are hip, knee, and ankle power of the left leg.

We see that the simulated robot walked at a moderate speed (approximately 0.8 m/s) and had a
natural looking gait. The simulation requires less than 20 watts of joint power on average. Most of
the energy consumption comes from the hips at the beginning of swing phase. It is interesting that
the algorithm does not contain any explicit speed control mechanism, yet speed is stabilized. We
speculate that this is due to the natural system dynamics, in the same way that speed is naturally
stabilized in the passive dynamic walkers.

5.3 Robot Algorithm

Figure 5-7 contains photographs of Spring Flamingo, a seven link planar bipedal walking robot. The
photo on the left is a close up of the knee joint and kneecap. The photo on the right is a close up of
the compliant ankle stop. We exploit these two natural mechanisms, and the passive swing in the
control of the robot.

The robot algorithm is summarized in Figure 5-8. As in the simulation algorithm, each leg
acts separately and has a simple state machine. The robot algorithm differs from the simulation
algorithm in two ways. First, because the robot does not have ground force sensors yet, we use
geometric state transition conditions for initiation of swing. Second, instead of controlling each joint
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Figure 5-5: sim Elapsed time snapshot of the simulated robot walking data. The drawings on the
left are spaced approximately 0.08 seconds apart and show the swing phase of one leg. The drawings
on the right are spaced approximately 0.25 seconds apart. The right leg is dotted while the left leg
is solid. Lines show the path of the tips of the feet and the hip trajectory. The robot walks from
left to right at approximately 0.8ms .
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Figure 5-6: sim Planar simulation data exploiting natural dynamics. The first row contains, left
to right, state of the legs, forward distance traveled, and forward velocity. The second row contains
total power, body height, and body pitch. The last row contains joint power at the hip, knee, and
ankle of the left leg.
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Figure 5-7: Spring Flamingo photograph. There are six force controlled actuators attached to the
body. Power is transmitted to the hips, knees, and ankles via cables. A boom prevents motion in
the lateral, roll, and yaw directions. A knee-cap (left) prevents the knee from hyper-extending, while
a compliant ankle limit (right) helps naturally transfer the center of pressure forward as the robot
travels forward over the foot.

separately, in a decoupled manner, we use Virtual Model Control [Pratt et al. (1997), Pratt & Pratt
(1998b)] in the control of pitch and height.

The control parameters for the physical robot were manually tuned over the course of two days.
Stable solutions were found that were fairly robust such that the robot walked continuously on level
ground. A time elapsed animation of the robot is shown in Figure 5-9. The drawings on the left
show the swing phase of one leg. The drawings on the right show several steps. Several variables
are plotted graphically in Figure 5-10. In the first row, left to right, are the state of the left leg
(solid) and right leg (dotted), forward distance traveled (x), and velocity. In the second row are
total power, body height, and pitch. In the last row are hip, knee, and ankle power of the left leg.

We see that the physical robot walked at a casual speed (approximately 0.5 m/s) and had a
natural looking gait. As in the simulation, it is interesting that the algorithm does not contain any
explicit speed control mechanism, yet speed is stabilized. The robot requires less than 5 Watts of
joint power on average. As in the simulation, most of the energy consumption comes from the hips
at the beginning of swing phase. We can compare the energy consumption to other vehicles by
computing the specific resistance

ε =
P

WV
=

5
9.81 ∗ 14 ∗ 0.5

= 0.07 (5.2)

This specific resistance is plotted versus velocity in Figure 5-11 along with other vehicles. However,
this power is mechanical power at the joints, not electrical input power. If we measure the power
from the wall outlet, over 200 Watts is required! This is due to inefficies in the power supplies, motor
amplifiers, and motors. Making the robot more efficient would take a lot of further engineering work.

5.4 Conclusions

Spring Flamingo walked continuously by exploiting the natural dynamics of a kneecap, compliant
ankle, and passive swing-leg. Two very simple algorithms are used in simulation and on the physical
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Hip: Servo to angle
Knee: Lock
Ankle: Servo foot level
              to ground

Hip: Servo pitch
Knee: Lock
Ankle: Elastic + push

Hip: Servo Pitch
Knee: Lock
Ankle: Elastic
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Ankle: Servo foot level
Knee: Passive swing

              to ground
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Support
(0)

Toe Off
(1)

Swing
(2)

Straighten
(3)

Robot
Algorithm

Figure 5-8: real Physical robot algorithm exploiting natural dynamics. Each leg has a state
machine which is in one of four states. State transition conditions and actions in each state are
shown.

Figure 5-9: real Elapsed time snapshot of the physical robot walking data exploiting natural
dynamics. The drawings on the left are spaced approximately 0.07 seconds apart and show the
swing phase of one leg. The drawings on the right are spaced approximately 0.4 seconds apart. The
robot walks from left to right at approximately 0.5ms .
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Figure 5-10: real Physical robot walking data exploiting natural dynamics.

robot. The resultant motion is fairly smooth and efficient. This work may help bridge the gap
between passive dynamic walkers and powered bipedal robots.

Both the simulation and the robot settle on a stable speed of walking. The simulation walks
approximately 0.8 m/s while the robot walks approximately 0.5 m/s. However, nowhere in either
controller is speed explicitly controlled. We believe that the speed is stabilized in a similar way to
passive dynamic walking machines. That is, if the robot goes too fast, it naturally takes a longer
step due to the natural swing-leg dynamics and hence slows down on the next step. Similarly, if the
robot moves too slowly, it naturally takes a shorter step and hence speeds up on the next step.

In order to exploit the natural dynamics of a walking robot, it is important that the inertia and
friction of the actuators does not dominate the dynamics of the legs. On Spring Flamingo we use
Series Elastic Actuators which result in very little unwanted dynamics. These actuators have good
force dynamic range and low force offset which are important in natural and efficient walking.

Both the simulation and the physical robot required tuning of parameters in order to walk. The
simulation was tuned first manually and then fine tuned using a genetic algorithm with efficiency as
the cost function. The genetic algorithm found a set of parameters which nicely synchronized toe off
of the support leg with heel strike of the swing-leg such that a smooth transfer of support occurred
and minimal energy was lost. The robot was only tuned manually but still walked fairly well. Its
joint power averaged less than 5 Watts.

Spring Flamingo demonstrates that natural mechanisms can be exploited to make control of
bipedal robots simple and the resultant motion natural looking and efficient. In Chapter 7, we
expand on this algorithm to get the robot to walk quickly (1.25ms ). We do this through active
control of velocity, more active control of the swing-hip, and more active control of the ankle during
toe off. In Chapter 8, we describe a similar algorithm for three dimensional bipedal walking.
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Figure 5-11: real Specific resistance of Spring Flamingo (filled circle) when walking exploiting
its natural dynamics. The robot walks at the speed of a slow pedestrian and has approximately
the same specific resistance. However, this value is computed from mechanical power and not from
input electrical power. Figure taken from Gabriella and Von Karmen (1950).
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Chapter 6

Limits to Speed in Bipedal
Walking

Speed appeals to the imagination and competitive spirit. It excites and challenges inventors and
engineers to devise new methods of transport and improve on existing ones, if for no other reason
than to conquer speed records. In the process of conquering such records, the limits to speed become
more apparent and more fully understood.

In the case of bipedal walking, building and controlling fast robots demands a deeper understand-
ing of bipedal walking than it does for slow robots. Fast walkers require dynamic balance while slow
ones may walk statically; they require more robustness as disturbances have a greater dynamic effect
and less time is available to correct for disturbances. Building fast bipedal walking robots not only
makes them more useful as machines but also ensures that the developer understands the issues
which are important in bipedal walking.

Koechling & Raibert (1988) studied the limits to speed in bipedal running robots. They cited
leg length, leg stiffness, maximum leg force, leg sweep angle and joint velocity as the limiting factors
in running speed. However, most of their analysis focussed on the stance leg. Minimum swing-time
was not cited as a limiting factor in running speed. Perhaps this was overlooked as their robot had
powerful hydraulic legs that could swing sufficiently fast.

Bipedal walking is very different than bipedal running. Since there is no aerial phase, the stride
length is limited to how far the body can move while being supported on a leg and the stride
time is limited by how fast the swing-leg can be positioned for the next stride. In this chapter we
hypothesize that minimum swing-time and maximum stride length are the major limiting factors to
bipedal walking speed, both robotic and human, on Earth.

As a person increases their walking speed they hit a point where they are walking with maximum
stride length and minimum swing-time. At higher speeds, they can not get the swing-leg out in front
fast enough. If speed is to be increased further, a running or skipping gait must be used. Such gaits
provide an aerial phase which allows for both a longer stride length and more time to swing the leg,
since the swing-leg can swing both during the stance phase and the aerial phase.

6.1 Non-Dimensional Parameters: Froude Number and Pratt
Number

Walking data is commonly expressed in dimensionless quantities, in order to normalize for different
shapes and sizes of walkers. For example, stride length is often normalized with leg length to give
relative stride length.

Speed is often normalized with gravity and leg length to produce a dimensionless quantity called
the Froude Number. This quantity can be viewed as a ratio between centrifugal and gravitational
forces, or as a ratio between kinetic and potential energies:
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Fr =
(
mv2

Lleg

)
/(mg) =

v2

gLleg
(6.1)

where m is body mass, g is gravitational acceleration, v is velocity, and Lleg is leg length. (In some
of the figures in this chapter we will plot various quantities against the Froude Number.)

Froude Number is often used as a scaling parameter in comparing animals of different sizes. A
maximum Froude Number limit is often cited as why astronauts had a hard time walking on the
moon: As gravity goes down, maximum velocity must go down in order to maintain a constant
Froude Number. At higher Froude Number, centrifugal force rises above gravitational force and the
astronauts must hop.

However, we hypothesize that another dimensionless quantity is important for determining max-
imum walking speed at Earth’s gravity. This quantity, which we refer to here as the Pratt Number,
is velocity normalized with minimum swing-time and leg length:

Pr =
Tswmin v

Lleg
(6.2)

where Tswmin is the minimum time it takes for the person to swing their leg a given distance while
not walking. In this Chapter, we choose a distance of 0.75m (in hindsight it would have been better
to choose a percentage of leg length).

We found that at maximum walking speed for several human subjects there was more variation
in the maximum Froude Number than the maximum Pratt Number. In Section 6.5 we show results
comparing the predictive value of these two non-dimensional parameters for maximum walking speed.

6.2 Stride Length and Stride Time Scaling with Speed

Average walking velocity is the stride length divided by the stride time,

V =
Lstride
Tstride

(6.3)

Therefore, to increase speed, one can either take a longer stride or decrease the stride time. Humans
do both as they increase their speed. Figure 6-1 shows data collected from 10 individuals whose
vital statistics are shown in Table 6.1.

The subjects were asked to walk on a 100 meter track at several different speeds from very slowly
to as fast as they could possibly walk without significantly bending their knees. The subjects were
recorded on video tape. The average speed, stride length, and stride times were computed using the
total distance, total time, and number of steps.

In Figure 6-1, normalized stride length, LstrideLleg
, (left) and stride time (right) are plotted against

Froude Number. Maximum stride length was approximately 1.1 times the leg length while minimum
stride time was approximately 0.35 to 0.40 seconds. Maximum Froude number achieved varied from
0.6 to 1.3.

6.3 Limits to Stride Length

Since walking contains a double support phase, the geometrical maximum stride length is twice the
length of the leg plus the distance between the hips. Of course, such a stride would require the hip
height to lower to the level of the ground and the pelvis to rotate 180o every step! From Figure 6-1,
we see that our test subjects have a stride length of approximately 90% of their leg length when
walking with a normal gait at a casual pace. At maximum speed, their stride length increases to
approximately 1.1 times their leg length.
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Figure 6-1: Scaling of stride length and stride time with speed in normal human walking. At
maximum speed the maximum stride length is approximately 1.1 times the leg length and the
minimum stride time is approximately 0.35 seconds.

The rimless wheel model of walking [McGeer (1990a)] provides insight into the stride length limit.
Suppose a rimless wheel (Figure 6-2) with rim separation angle of 2α0 is rolling on flat ground. As
McGeer shows using conservation of angular momentum, each time a spoke hits the ground there is
an impulse which reduces the rotation rate Ω of the wheel,

Ω+

Ω−
=

cos 2α0 + r2
gyr

1 + r2
gyr

= η (6.4)

where rgyr is the wheel’s radius of gyration normalized by the leg length. Much of a human’s mass is
in the upper body which does not rotate like a rimless wheel would. Therefore, the effective radius
of gyration is low and can be approximated as zero. In order to maintain a velocity then, we get
α0 < 90o which limits the stride length Lstride <

√
2Lleg. At this limit, the rimless wheel would

come to a standstill on each impact.
The rimless wheel model assumes point contact with the ground. In a human with a foot the

effective pivot point (center of pressure) can lie anywhere inside the foot. Therefore the maximum
stride length is increased by the length of the foot. Weyand et al. (1999) argues that this is one
reason why humans take longer strides and are more efficient walkers than rheas, ostrich-like bipedal
birds which have shorter feet than humans. Therefore, an upper bound on the stride length during
normal walking is

√
2Lleg +Lfoot. Of course the real limit will be lower than this since at this stride

length velocity goes to zero on each impact. From Figure 6-1 we see that the maximum stride length
for normal walking in the test subjects is approximately 1.2 times the leg length.

6.3.1 Groucho Running

The above analysis on maximum stride length was based on a rimless wheel model with a pure
compass gait. By flattening the center of mass trajectory, longer stride lengths can be achieved as
less energy is lost on the foot-ground impact. This is the case with Groucho Running [McMahon et
al. (1987)]. During normal walking, the center of mass reaches a maximum height near mid-stride.
For Groucho Running, the center of mass reaches a minimum height near mid-stride. Like normal
running, potential and kinetic energy are in phase during Groucho Running. Therefore, even though
there is no aerial phase, Groucho Running is more energetically similar to running than to walking.

In Groucho Running, maximum stride length should increase, resulting in a larger maximum
speed. However, if Groucho Running is performed while limiting the stride length, speed should
not be increased significantly, as bent knees increase walking speed mostly by increasing maximum
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Figure 6-2: McGeer’s rimless wheel model of walking. Leg separation angle is 2α0. l is the leg
length. rgyr is the radius of gyration normalized with the leg length.

Subject Leg Length Height Mass Age Sex
1 0.91m 1.75m 67.7kg 24y Male
2 0.89m 1.68m 75.0kg 33y Male
3 0.89m 1.68m 65.9kg 26y Female
4 1.07m 1.98m 114.0kg 29y Male
5 0.99m 1.83m 82.7kg 27y Male
6 1.02m 1.78m 77.3kg 28y Male
7 0.84m 1.65m 63.6kg 29y Male
8 0.89m 1.75m 54.5kg 33y Male
9 0.97m 1.83m 72.7kg 28y Male
10 0.84m 1.61m 50.0kg 29y Female

Table 6.1: Vital Statistics of Human subjects used in the walking experiments.

stride length. However, other secondary effects of bent knees are decreasing swing-leg inertia about
the hip and having the knee collapse before swing, which may reduce swing-time.

To test the hypothesis that increased stride length is the primary benefit to maximum walking
speed with bent knees, we had five human subjects walk in various fashions on a 100 meter track.
They were asked to:

1. Walk as fast as possible without significantly bending one’s knees.

2. Walk as fast as possible while significantly bending one’s knees (Groucho Run).

3. Groucho Run with stride length approximately equal to stride length in the fast walking
experiment.

Figure 6-3 shows maximum velocity, stride length and stride time for human subjects walking
normally and Groucho Running. We see that the average stride length when walking fast but
normally is approximately 1.1 times the leg length. When Groucho Running, the stride length
increases, usually resulting in an increase in velocity.

When Groucho Running with a reduced stride length, the subjects only achieved a speed slightly
faster than their top normal walking speed. In all cases, the stride time was lowest in the normal
walking case. Therefore, we hypothesize that it is mostly the increase in stride length and not other
factors which makes Groucho Running faster than normal walking.

We conclude that limited stride length limits human walking speed. Groucho Running can be
used to extend the stride length but is typically not used by humans since it is less efficient than
normal running.
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Figure 6-3: Results of Groucho Running experiments. Groucho Running is faster than normal
walking since stride length is increased. However, stride time is longer when Groucho Running.
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Figure 6-4: Rotating pendulum model for estimating walking speed limit. Centrifugal force of mv2

l
will equal the gravity force of mg at the top of the arc if v2 = gl (Froude Number equals 1.0). At
that speed the force on the foot will fall to zero.

6.4 Limits to Stride Time

Figure 6-1 shows that at the fastest walking speed, stride time is approximately 0.35 to 0.40 seconds.
There are several things which may limit minimum stride time:

1. Stance leg strength and power may limit how fast the body can move and still be supported
by the stance leg.

2. At high speed the ground reaction force may fall due to centrifugal force from the body rotating
like an inverted pendulum.

3. The swing-leg may have a minimum swing-time due to leg inertia, strength, and coordination.

The first of these is unlikely since a person can move much more quickly on the same support
leg during running than during walking.

The second limitation is a real limitation in low gravity such as on the Moon. If the body is
moving at velocity v, along a perfect arc as in Figure 6-4, then at the top of the arc, the upward
centrifugal force is mv2

l . This force will be greater than the gravity force mg when v2 = gl, i.e. when
the Froude Number, v

2

gl , is greater than 1.0. For a person with a leg length of 1.0m, this corresponds
to a maximum Earth speed of 3.3ms which is above but close to the walk to run transition speed.
However, the center of mass in normal walking does not follow a perfect arc but rather follows a
significantly flattened arc [Lee & Farley (1998)].

We hypothesize that neither of the first two limitations are reached in normal human walking on
Earth. Instead, we believe that the third limitation, minimum swing-time, is the limitation for stride
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strideL

Figure 6-5: Cartoon of standard human bipedal walking. Two full walking cycles are shown. Lstride
is the stride length. With standard walking swing-time is limited to the stride time.

time of human walking on Earth. When the speed is too great, one can not get the swing-leg out in
front fast enough and must revert to running. We demonstrate that swing-time is a hard limit by
showing that faster walking can be achieved by artificially allowing for longer swing-time. In fact,
Froude Numbers of 1.5 can be achieved without significantly changing the stance leg characteristics
or stride length. Higher numbers can be achieved if significant knee bend (Groucho Running) is
allowed, even if longer stride lengths are not used. This may be due to flattening of the body
trajectory, or perhaps at high speeds larger knee-break is required upon landing, or perhaps some
other factor. We can achieve longer swing-times for a given speed through Three-Legged Walking.

6.4.1 Three-Legged Walking

Figure 6-5 shows a time elapsed cartoon drawing of normal bipedal walking. If we define the swing-
leg to be in the swing phase at the same instant that the next stance leg touches the ground, then the
swing-time is equal to the stance time. At fast walking speeds, humans tend to walk this way and
the double support phase nearly vanishes. Therefore for this discussion we will assume no double
support phase.

Suppose there was a human with three legs, as in Figure 6-6. At a fast walking speed, each of
the three legs would be in stance phase for 1

3 and swing for 2
3 of the walk cycle. Figure 6-7 shows

each of the legs separately while Figure 6-8 shows a cartoon animation of the walking. Assuming
that the swing-time for a three-legged human is the same as for a two-legged human, each stride
can be twice as fast and still allow time for the swing-leg to be in position for its new stance phase.

The only difference in the gait of each leg between the three-legged walker and the two-legged
walker is the swing phase. Thus, if swing-time is a limiting factor in walking speed then the three-
legged person should be able to walk up to twice as fast.

Three-legged walking can be simulated with a real person by equipping them with a pair of
crutches to use as their third leg. Figure 6-9 shows a snapshot of the author walking on a treadmill
performing three-legged crutching. We tested five subjects by having them walk in various fashions
on a 100 meter track. The subjects were asked to

1. Walk as fast as possible without significantly bending one’s knees.

2. Three-legged walk as fast as possible without significantly bending one’s knees.

3. Three-legged walk as fast as possible while significantly bending one’s knees.

The average speed, stride length, and stride time were computed as before. The results are shown
in Figure 6-10.

We see that three-legged fast crutching was faster across subjects than normal fast walking. We
hypothesize that the increase in speed came from a decrease in stride time which was due to having
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Lstride

Figure 6-6: Cartoon of human walking with three legs. Two full walking cycles are shown. Lstride
is the stride length. With three-legged walking swing-time is limited to twice the stride time.
Therefore, if minimum swing-time is a limitation of human walking, a three-legged human should
be able to walk twice as fast as a two-legged human.

Figure 6-7: Three-legged walking showing each leg separately for clarity. We see that the swing-leg
can move more slowly with respect to the stance leg than with two-legged walking.
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Figure 6-8: Stop frame animation of three-legged walking. Notice that in some frames there are two
legs swinging at the same time and that in all frames at least one leg is swinging.

Figure 6-9: Video frames of a test subject (the author) three-legged walking on a treadmill. Images
proceed left to right, top to bottom.
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Figure 6-10: Results of fast walking, three-legged walking, and three-legged Groucho Running.
Three-legged walking is faster than normal walking suggesting that swing-time is a limiting factor
in walking speed. Stride time is decreased and stride length are increased in three-legged Groucho
Running, making it even faster than normal walking.

twice as much time available to swing the leg. Stride length was about the same as in normal
walking. This suggests that minimum swing-time is a limiting factor of top walking speed on Earth.

By combining the effects of three-legged walking and Groucho Running, the subjects were able
to increase their speed even further. The fastest three-legged walking subject (the author) was able
to move at a velocity of 5.56ms (100 meters in 18 seconds – only 4 seconds slower than the subject
could run 100 meters). Assuming the pace could be maintained, this time corresponds to a mile
time of 4 minutes and 48 seconds, nearly a minute faster than the world record race walking mile!
Of course, such a walk would not be allowed in speed walking races as knee bend is not allowed, nor
are three legs.

6.4.2 What Limits Swing-Time?

In order for the swing-leg to complete a swing phase, the thigh, shin, and foot must be accelerated,
swung through, and decelerated. The fastest this can be done may be limited by leg inertia, control
bandwidth, maximum muscle speed, maximum muscle torque, and coordination of the swing-leg.

We asked 10 human subjects to step forward and backward as quickly as possible 10 times at
three different stride lengths. The average time to swing the leg was calculated. Results are plotted
in Figure 6-11. We see that minimum swing-time depends on swing distance.

Minimum swing-time is hard to predict for a given person since it not only depends on leg inertia
but also on factors such as the ratio of fast twitch to slow twitch muscle fibers, coordination, skill,
and training. We see that there is a large variation across subjects in minimum swing time and we
cite this as a reason for the variation in maximum walking speed.

6.5 Predicting Maximum Walking Speed

Not surprisingly, the subjects with the minimum swing-time also had the fastest walking speed for
their leg length. Therefore, it is reasonable to expect the Pratt Number to be a useful predictor of
maximum walking speed. Figure 6-12 shows results from fast walking experiments with ten subjects.
The top graphs show actual maximum walking speed and estimated speed based on the maximum
Pratt number limit (left) and Froude number limit (right). Although the Pratt number prediction
is a closer line fit, both seem like good candidates for predicting speed, especially considering the
margins of error. We see that relative stride length and stride time is fairly constant between
individuals. Maximum Pratt number is fairly constant while maximum Froude number varies a bit.
We plot the square root of the Froude number to remove the squaring factor on velocity, resulting
in a more fair comparison.

From Figure 6-12 there is not enough of a range of data to conclusively determine whether Pratt
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Figure 6-11: Swing Limits Data. Minimum swing time increases with swing distance. There is a
large variation among subjects for minimum swing time. We argue that this variation is responsible
for the variation in maximum walking speeds among different subjects.

Number or Froude Number is a better predictor of maximum walking speed. However, we can
perform a simple experiment in which the subjects walk with various ankle weights. In this case
the maximum speed predicted by Froude Number will not change since gravity and leg length both
remain constant. However, Pratt Number will predict a slower speed since the minimum swing time
should increase.

Figure 6-13 shows results from four subjects walking fast without ankle weights, with three
different ankle weights, and with the ankle weights in a backpack. As the weight increased, both
minimum swing time and stride time increased in such a way that stride time, relative to minimum
swing time, remained fairly constant. Stride length remained fairly constant despite differing ankle
weights. Therefore, Pratt number remained fairly constant while Froude number varied. Thus, in
this case, Pratt Number is a much better predictor of maximum walking speed than Froude Number.

6.6 Discussion

We hypothesize and have shown evidence from our test subjects that the major limiting factors
for bipedal walking speed on Earth are stride length and swing-time. For normal, non-Groucho
walking, stride length is limited to approximately 1.1 times the leg length. Swing-time is limited
by the inertia, strength and coordination of the swing-leg, but only slightly affected by gravity. For
most subjects, minimum swing-time was between 0.25 and 0.35 seconds. For our subjects tested,
Pratt Number varied under 15% while Froude Number varied by a factor of two. Therefore it seems
that Pratt Number may be a better predictor of maximum walking speed than Froude Number on
the Earth.

6.6.1 Scaling Maximum Speed with Gravity (Will we Walk on Mars? Or
will we Hop?)

We have argued that at Earth’s gravity, swing-time and stride length are the limiting factors for
maximum walking speed. Since neither of these is highly dependent on gravity, the maximum
walking speed near Earth’s gravity should then be mostly independent of gravity.

At low gravity, Froude Number becomes important as losing foot-ground contact due to cen-
trifugal force is the limiting factor in walking speed. This is cited as the major reason why the
astronauts on the moon found a hopping gait preferable to a walking gait. The limiting value of
Froude Number is is still an open question. From the simple pendulum model, we get v2 < gLleg
(Froude Number less than 1.0). But our fastest walking subject walked at Froude Numbers of about
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Figure 6-12: Results from maximum velocity walking experiments. Ten subject were asked to walk
as fast as possible on a 100 meter track. Pratt Number appears as a potentially better predictor
of maximum walking speed than Froude Number (upper row of graphs). There is low variation in
the stride length relative to leg length and the stride time relative to minimum swing time (second
row of graphs). Therefore there is low variation in the maximum Pratt Number, while there is more
variation in the maximum Froude Number (lower row of graphs).
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Figure 6-13: Results from maximum velocity walking experiments with ankle weights. Four subjects
walked as fast as possible with no weight, 5 lb. ankle weights, 10 lb. ankle weights, 15 lb. ankle
weights, and a 30 lb. backpack. Upper left graph shows predicted and actual velocity when using
Pratt Number as a maximum velocity predictor. Upper right graph shows the same when using
Froude Number. As more ankle weight was added, average velocity decreased, due mainly to in-
creasing swing time. Stride length relative to leg length and stride time relative to minimum swing
time remained fairly constant across subjects and weights (second row of graphs). Thus there was
less variation in Pratt Number than in Froude Number (third row of graphs).

86



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

Gravity (Gs)

M
ax

 S
pe

ed
 (

m
/s

)

Figure 6-14: Human walking speed limits as a function of gravity. At low gravity losing foot-ground
contact due to centrifugal force is the limiting factor. This is indicated by the dotted, dash-dotted,
and dashed curves v2 < 1.0gl, v2 < 1.5gl, and v2 < 2.0gl with a leg length of 1.0 meters. At near
Earth’s gravity, maximum speed is independent of gravity since swing-time and stride length, which
are mostly independent of gravity, are the limiting factors. These limits intersect between a gravity
of 0.4 Gs and 0.8 Gs.

1.25 and our fastest 3-legged walking subject walked at Froude Numbers of about 1.5 and Groucho
Ran at Froude Numbers over 2.0.

Thus we speculate that at lower gravities in which losing foot contact, and not swing-time, is the
limiting factor in walking, Froude numbers between 1.0 and 1.5 may be achievable for normal walking
and Froude numbers over 2.0 will be achievable for walking with significantly flattened trajectories
or for Groucho Running.

Froude Number limits of 1.0, 1.5, and 2.0 are plotted in Figure 6-14 for a person with leg length
of 1.0m. Also plotted is the limit of 2.75ms , which is typical for 1.0m leg length. These limits meet
at a gravity between 0.4 and 0.8 Gs. Mars gravity is about 0.4 Gs. It is interesting to wonder what
the top walking speed on Mars would be.

Cavagna, Willems, and Heglund [Cavagna et al. (1998)] have shown, for a particular subject, that
the energetically optimal walking speed on Mars for a particular subject is 1.51ms , down from 2.44ms
on Earth and that the work done per unit distance to move the center of mass is half that on Earth.
However, they do not report on the top walking speed at various gravities. An interesting experiment
would be to experimentally measure the gravity/speed curve of Figure 6-14. This could be done
simply by having subjects walk as fast as possible while artificially simulating various gravities in
NASA’s KC-135 airplane, also known as the “Vomit Comet”. (If looking for a potential test subject,
please contact the author!)

6.6.2 Dynamically Similar Walking

McMahon and Bonner, in their book “On Size and Life” [McMahon & Bonner (1983)], give an
excellent introduction to dimensional analysis and dynamic similarity. Following their explanation,
two scaled objects are dynamically similar if all relevant dimensionless quantities are the same. For

example two pendulums are dynamically similar if
T 2
swingg

l and the swing angle are the same between
them. Two submarines are dynamically similar if they are the same shape and if their Reynolds
Number and Froude Number are the same.

Previous theories on dynamical similarity [Alexander & Jayes (1983)] have suggested that humans
will walk in a dynamically similar fashion at equal Froude Numbers, Fr = v2

gLleg
. Various studies

support dynamic similarity when velocity and leg length are varied. However, Donelan & Kram
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(1997) have shown that if gravity is changed, gaits are not dynamically similar at equal Froude
Numbers.

We have shown in this chapter that maximum velocity normalized with minimum swing-time
and leg length, Prmax = Tswminvmax

Lleg
, is fairly constant among test subjects while maximum Froude

Number has more variation. Since swing characteristics are important in bipedal walking, it may be
important to keep both this quantity and the Froude Number constant in order to achieve dynamic
similarity.

Suppose we simulate reduced gravity of 25% Earth’s gravity. For a given person, leg length does
not change. To keep Froude Number constant, velocity would have to be decreased by half. However,
to keep velocity normalized with swing-time and leg length constant, swing-time would then have
to double for dynamic similarity. To achieve this, one could add damping to the subjects hip or
add inertia to the swing-leg. We believe that if Donelan and Kram’s experiments are reproduced,
keeping both dimensionless quantities in mind, then dynamic similarity might be better achieved.

Note that a third dimensionless quantity, T 2
swming
Lleg

, can be created by manipulating Fr and Pr.
This quantity is constant for a passively swinging pendulum. Therefore, if the swing-leg dynamics
were dictated by pendulum dynamics, dynamic similarity would probably be achieved at equal
Froude Numbers when gravity was changed. However, the swing-leg does not scale with gravity
like a passive pendulum since it is the inertial and muscular properties of the leg which determine
minimum swing-time. Keeping both Pr and Fr constant as gravity varies forces swing-time to scale
as if the swing-leg dynamics were dominated by the passive pendulum dynamics.

6.6.3 Discussion of Experimental Methods

While the results of this chapter are convincing, the experimental methods have something to be
desired. Only a small number of subjects were tested with only a small number of trials. Insufficient
practice in Groucho Running and three-legged crutching resulted in some skewed results due to some
subjects still learning how to walk in this fashion. Experiments were performed on an outdoor track
over different days with differing weather conditions. Therefore, we leave the results of this chapter
as open hypotheses which require further testing.

6.6.4 Relevance to Bipedal Walking Robots

In order to make fast bipedal walking robots, we should thus concentrate on stride length and
swing-time and a quick transition from swing to stance. In Chapter 7 we describe how we increased
the speed of Spring Flamingo, our bipedal walking robot, from approximately 0.8ms to 1.25ms by
increasing the stride length and reducing the swing-time. Speed was significantly less than maximum
human walking speed because we could not get the swing-leg to swing any faster due to actuator
saturation and control difficulties. From experience, we now believe that the most challenging part
of achieving high speed bipedal walking is to minimize swing-time.
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Chapter 7

Fast Walking Algorithm

In Chapter 5 we showed that the natural dynamics of the robot mechanism can be exploited in the
control of walking. For slow walking the swing-leg can swing almost completely passively and speed
can be self-stabilizing.

In this Chapter we are concerned with producing an algorithm that results in fast walking. To do
so we actively control the swing-leg, actively control the robot’s velocity, and more actively control
the ankle during toe-off.

In Chapter 6 we argued that swing time is a limiting factor in top walking speed on the Earth.
Up to this point, we have avoided using dynamic inversion or trajectory tracking. However, as a first
step in achieving a fast swing time, we now decide to use inverse dynamics in addition to feedback in
order for the swing thigh to track a minimum jerk trajectory. We still allow the knee to collapse and
swing passively during the first half of swing. However, we take into consideration the dynamics of
the entire swing-leg when controlling the thigh. During the second half of swing, we apply trajectory
tracking to both the thigh and the shin.

This approach results in walking at speeds up to 1.25ms . Faster speeds were not achieved as
torque and speed limits of the actuators made it difficult to swing the legs any faster.

7.1 Fast Walking Algorithm

The fast walking algorithm is very similar to those described in Chapters 4 and 5 with the exception
of the swing-leg control and state transitions based on foot forces. The intuitive strategies employed
are the following:

• Height: Maintain a constant stance leg length by pushing up until hitting the knee cap.

• Pitch: Maintain level pitch using a virtual spring damper mechanism with a set point. Set
point may be moved for speed control.

• Transitions: Transition from Support state to Toe Off state when the heel lifts off the ground.
Transition to the Swing state when the force on the toe falls below a threshold. Transition
to the Hold state after swinging for a preset amount of time. Transition to the Support state
once the swing-leg hits the ground.

• Swing-Leg: Initiate swing of the non-stance leg by tracking a minimum jerk trajectory at
the thigh while the knee is passively damped. During the second part of swing track both a
thigh and shin trajectory.

• Speed: Maintain the virtual toe point of the support foot approximately below the center of
mass. Move it forward if walking too quickly or backward if walking too slowly. Lean forward
if walking too slowly and backward if walking too quickly.

This algorithm is summarized in Figure 7-1. Since the algorithm is very similar to the other
algorithms, in this chapter we concentrate on the quick swing-leg control.
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Hip: Torque back 
Knee: Lock
Ankle: Servo foot level
              to ground

Hip: Servo pitch
Knee: Lock
Ankle: Elastic + push

Hip: Servo Pitch
Knee: Lock
Ankle: Elastic

Hip: Track trajectory

Ankle: Servo foot level

Knee: Initially passive,
           then track trajectory

              to ground

Heel Force 
Above Threshhold

Swing time passes Toe Force Below Threshhold and
Other Leg in Support Phase

Heel Force Below Threshhold

Support
(0)

Toe Off
(1)

Swing
(2)

Swing Back
(3)

Robot
Algorithm

Figure 7-1: real Fast walking algorithm. Each leg has a state machine which is in one of four
states. State transition conditions and actions in each state are shown.

7.2 Swing-Leg Control

To quickly swing the swing-leg, we use traditional trajectory tracking techniques commonly employed
with robot arms. In Appendix B, we derive the dynamic equations of motion for the swing-leg. These
equations can be written as

H(q)q̈ + C(q, q̇)q̇ + ~g(q) = τ (7.1)

where H is the mass matrix, C is the matrix of centrifugal and Coriolis terms, and ~g is the gravita-
tional vector. q is the vector of thigh and shin positions:

q1 = θb + θh (7.2)
q2 = θb + θh + θk (7.3)

(7.4)

In Appendix B, we describe an adaptive control technique which we use for identifying the
parameters of the equations of motion. When adaptation is turned off, the adaptive controller of
Appendix B can be written as

τ = Ĥq̈d + Ĉq̇d + ĝ +KP (qd − q) +KD(q̇d − q̇) (7.5)

where Ĥ, Ĉ, and ĝ are the esitmated inertia and Coriolis matrices and gravitational vectors of the
dynamics, KP is a matrix of proportional feedback gains, and KD is a matrix of derivative feedback
gains. The three terms on the left are feed-forward terms while those on the right are feedback
terms. The feedback gain matrices can be derived as
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KP =
[
KD1λ1 + a2 sin(qk)q̇1λ1 0

0 KD2λ2

]
(7.6)

KD =
[
KD1 + (a1 + a2 cos(qk))λ1 0

0 KD2 + a3λ2

]
(7.7)

Note that the gains are dependent on the angle of the knee and that one term is even dependent
on the velocity of the thigh. The control gains used in this Chapter are the same as those used in
Appendix B:

KD1 = 1.0 (7.8)
KD2 = 0.7 (7.9)
λ1 = 16.0 (7.10)
λ2 = 10.0 (7.11)

We use a minimum-jerk 5th order spline for the desired thigh trajectory [Flash & Hogan (1985)].

q1d(t) = q10 + (q10 − q1df )(15τ4 − 6τ5 − 10τ3) (7.12)

q̇1d(t) =
1
tf

(q10 − q1df )(60τ3 − 30τ4 − 30τ2) (7.13)

q̈1d(t) =
1
t2f

(q10 − q1df )(180τ2 − 120τ3 − 60τ) (7.14)

where q1d is the desired thigh angle, q10 is the actual thigh start angle, q1df is the desired final
thigh angle, t is the time since initiation of swing, tf is the final time, and τ = t

tf
. The thigh

trajectory starts at the beginning of the swing phase. The thigh is swung forward along a minimum
jerk trajectory to a preset position during the first part of swing. During the second part of swing
it is swung back to a shallower angle.

Initially the shin swings passively, with damping at the knee in order to prevent the knee from
collapsing too much. To achieve this, we simply make the desired thigh position and velocity equal
to the actual position and velocity and compute what the desired acceleration should be in order to
achieve the desired damping torque:

q2d(t) = q2(t) (7.15)
q̇2d(t) = q̇2(t) (7.16)

q̈2d(t) =
1
Ĥ22

(−Ĥ21q̈1d − Ĉ21q̇1 − Ĉ22q̇2 − ĝ2 + τ2) (7.17)

(7.18)

where Ĥ21, Ĥ22, Ĉ21, Ĉ22, and ĝ2 are selected elements of the estimated inertial and Coriolis matrices
and gravity vector.

After the shin swings passively for a set amount of time, we then have it follow a 3rd order spline
trajectory [Craig (1989)]. The initial position and velocity are set to equal the current shin state.
The final position and velocity are predetermined constant parameters.
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q2d(t) = a0 + a1t+ a2t
2 + a3t

3 (7.19)
q̇2d(t) = a1 + 2a2t+ 3a3t

2 (7.20)
q̈2d(t) = 2a2 + 6a3t (7.21)

(7.22)

where

a0 = q20 (7.23)
a1 = q̇20 (7.24)

a2 =
3(q2f − q20)

t2f
−

2q̇20 − q̇2f
tf

(7.25)

a3 = −
2(q2f − q20)

t3f
+
q̇20 + q̇2f

t2f
(7.26)

7.3 Results

Using this algorithm, Spring Flamingo occasionally walked at speeds up to 1.25ms . The robot walked
reliably at speeds up to 1.1ms , results of which we present below. We also present results from varying
the desired velocity and from recovering after being pushed.

Typical thigh and shin tracking results while walking at 1.1ms are shown in Figure 7-2. The
parameters we used for the desired trajectories for the first half of swing were:

q1f = 0.55 (7.27)
tf = 0.35 (7.28)

while the parameters for the second half of swing were

q1f = 0.45 (7.29)
q2f = 0.50 (7.30)
q̇2f = 0.0 (7.31)
tf = 0.17 (7.32)

Swing was initiated at approximately 4.28 seconds. The knee was passively damped until approx-
imately 4.46 seconds, at which time the shin tracked a 3rd order spline trajectory. We see that good
tracking was achieved for both the thigh and shin until approximately 4.6 seconds, at which time
the knee hit the knee limit stop, causing an un-modeled disturbance in both trajectories. Swing was
complete at 4.8 seconds, at which time the Swing Back state was entered. The leg hit the ground
and transitioned to the Support state at approximately 4.92 seconds, for a total time of swing of
approximately 0.64 seconds.

Figure 7-3 shows five seconds of data from Spring Flamingo walking at 1.1ms , while a stick figure
animation of the same data is shown in Figure 7-4 and also plotted in flip-book format at the bottom
of this thesis. The top three graphs of Figure 7-3 show velocity, height, and pitch. The velocity
fluctuates during each stride and between legs as the inner leg moves more slowly than the outer leg.
The height exhibits an arc-like pattern as the robot walks with a compass-like gait. Pitch fluctuates
both due to disturbances caused by each step and because it is actively used to control speed. The
middle three graphs show the state machine state, thigh angle, and shin angle of the two legs. The
bottom three graphs show mechanical power being applied at the left hip, knee, and ankle. We see
that there are significant peaks in hip and knee power during swing and in the ankle during toe-off.
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Figure 7-2: real Data showing thigh and shin tracking during swing while walking 1.1ms . Dashed
plots are desired values while solid plots are actual values. At approximately 4.7 seconds, the knee
hits its limit stop which causes tracking errors. The duration from start of swing until the leg is
straight is approximately 0.55 seconds while the duration from start of swing until touch-down is
approximately 0.67 seconds. A large amounts of positive work is applied by the hip at the beginning
of swing in order to accelerate it while a large amount of negative work is absorbed by the knee in
order to prevent it from collapsing too much.
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Figure 7-3: real Data from Spring Flamingo walking at 1.1ms . The top three graphs show velocity,
height, and pitch. The middle three graphs show the state machine state, thigh angle, and hip angle
of the two legs. The data for the right leg is dashed while the data for the left leg is solid. The
bottom three graphs show mechanical power being applied at the left hip, knee, and ankle. This
data is plotted as an elapsed time snapshot in Figure 7-4 and along the bottom of this document.
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Figure 7-4: real Elapsed time snapshot of Spring Flamingo walking at 1.1ms . The drawings on
the left are spaced approximately 0.06 seconds apart and show the swing phase of one leg. The
drawings on the right are spaced approximately 0.2 seconds apart. The robot walks from left to
right. Snapshots of this data spaced approximately 0.06 seconds apart are also plotted on the bottom
of this thesis.

Figure 7-5 shows results from varying the desired velocity from 0.0ms during standing to 0.9ms .
We see that speed is tracked fairly well, although not with high precision. It takes a few steps for
the robot to change from one speed to another.

Figure 7-6 shows disturbance rejection after being pushed. The desired speed is set at 0.6ms .
At approximately 15 seconds, the robot is pushed backward, decelerating it to under 0.2ms . At
approximately 25 seconds, the robot is pushed forward, accelerating it to over 0.9ms . In both cases,
the robot regains the desired velocity in a few steps. The second push also creates a significant
disturbance in both height and pitch, both of which the robot quickly recovers from.

7.4 Conclusions

By more quickly swinging the swing-leg using trajectory tracking methods, we were able to control
the robot to walk up to 1.25ms . While this is a moderate speed for a human, it is quite fast for
modern bipedal walking robots. Preliminary versions of Honda’s P2 and P3 robots were able to
walk up to 1.30ms . We know of no other bipedal robots which can walk over 1.0ms .

We were not able to achieve faster walking speeds as the motors of the robot were pushed beyond
their rated specifications. From Figure 7-2 we see that the hip power exceeded 50W during swing.
However, the hip motor is only rated for 30W ! At speeds over 1.0ms the hip motors would heat up
and start smoking after 3 laps of walking. It is curious to note that large amounts of positive work
is applied at the hip at the same time large amounts of negative work is absorbed at the knee (lower
2 graphs of Figure 7-2). Since an individual actuator is employed at each joint, the total amount of
work is large. Perhaps a multi-joint actuator which passes over both the hip and the knee could be
used during the first half of swing and consume much less total power.

In Figure 7-7, we plot relative stride length and stride time vs. Froude Number for various
walking trials of Spring Flamingo and for the human subjects of Chapter 6. The fastest stride
times we could achieve with Spring Flamingo were 0.61 seconds. The longest relative stride lengths
we could achieve were 0.99. Compared to the human test subjects who could walk with a stride
time of as low as 0.3 seconds, and a relative stride length up to 1.1, we see there is much room for
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Figure 7-5: real Data showing control of walking speed. The actual speed (solid) follows the
trend of the desired speed (dashed), although it does not track it exactly. The robot is standing and
balancing for the first five seconds.

improvement.
Spring Flamingo’s fastest Froude Number was 0.18 which falls way outside the range of maximum

Froude Numbers for the human test subjects of Chapter 6 (Figure 6-12). However, if we calculate
the maximum Pr,

Prmax =
Tswminvmax

Lleg
(7.33)

we get Prmax = 0.52 ∗ 1.25/0.89 = 0.73, which is within 20% of the range of the human subjects
in Figure 6-12. We use a minimum swing time of 0.52 seconds since it is the minimum duration of
the desired spline trajectories the swing-leg tracks. However, in Chapter 6, we include the time to
touch down in the swing time measurements. Therefore, a minimum swing time between 0.6 and
0.7 would be more realistic, resulting in a Pr range between 0.84 and 0.98, which matches the range
of human subject values in Figure 6-12. This further supports the hypothesis that minimum swing
time is the limiting factor in walking speed at Earth’s gravity. Spring Flamingo’s speed was limited
mostly by the lack of power in its motors which in turn limited how fast it could swing its leg.
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Figure 7-6: real Data showing disturbance rejection due to being pushed. The robot is pushed
backward at approximately 15 seconds which decreases its speed and pushed forward at approxi-
mately 25 seconds which increases its speed. In both cases, the robot regains the desired speed of
approximately 0.6ms . The second push creates a significant disturbance in both height and pitch,
yet the robot quickly recovers.
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Figure 7-7: real Relative stride lengths and stride times achieved for various walking trials of
Spring Flamingo (*), compared to data from human subjects (circles). We see that Spring Flamingo
walks relatively slowly compared to the human subjects, achieving a maximum Froude Number of
0.18.
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Chapter 8

3D Bipedal Walking Simulation

In Chapter 5 we showed that natural dynamics mechanisms could be exploited in the control of
bipedal walking robots. In this chapter we use the same natural dynamic mechanisms and extend
the algorithm to 3D walking. We use a knee cap to prevent the leg from inverting, which makes
control of height easy. We use a compliant ankle limit so that the center of pressure on the foot
travels forward with the center of mass of the body. And we exploit the natural swing dynamics of
the leg to make swing control simple and natural looking.

The 3D algorithm uses the planar simulation algorithm described in Chapter 5 to control motion
in the sagittal plane. Fowble & Kuo (1996) showed with a 3D passive dynamic walking model
that the dynamics of the sagittal plane are sufficiently decoupled from dynamics of the frontal and
transverse planes such that control of each can be treated separately. Therefore, we extend our
planar algorithm by adding lateral balance through foot placement and ankle torque.

8.1 3D Simulation Algorithm

In this Chapter we use the natural dynamic mechanisms described in Chapter 5 in the control of
a simulated seven-link, twelve degree-of-freedom, bipedal robot. The rigid body simulation (Figure
8-1) is implemented using the Creature Library, an in-house software package based on SD-Fast
of Symbolic Dynamics (www.symdyn.com). The robot model has an actuated hip (3 degree-of-
freedom), knee (1 degree-of-freedom), and ankle (2 degree-of-freedom) on each leg. The physical
parameters (Table 8.1) were chosen to match those of a bipedal robot currently under construction.
Note that the nearly half of the mass of the robot is in its legs.

The simulation algorithm is summarized in Figure 8-2, with controller parameters in Table 8.2.
Pitch, roll, and yaw are defined as if the body were an airplane: pitch corresponds to bending
forward, roll to bending to the side, and yaw to twisting about the vertical axis. Each leg acts

Length hip to body hip sep. thigh shin foot length width height

(m) .160 .184 .432 .432 .203 .089 .051
Mass body thigh shin foot

(kg) 12.75 2.74 2.70 0.66
Inertia body Ixx,yy Izz thigh Ixx,yy Izz shin Ixx,yy Izz foot Ixx Iyy Izz

(kgm2) .23 .21 .044 .004 .054 .003 .001 .002 .002

Table 8.1: sim Physical parameters of the simulated bipedal walker. The center of mass of all links
are located at their centroid. The first length is the distance of the body center of mass above the
hip. The second length is the separation distance between the hips. The moments of inertia are
calculated about the center of mass of each link.
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Figure 8-1: sim Three dimensional bipedal walking simulation. The robot has twelve degrees of
freedom: three in each hip, one in each knee, and two in each ankle. The simulation is based on a
real robot, called M2, that we are currently building.

separately and has a simple state machine. The leg can be in either Support, Toe Off, Swing, or
Straighten states. Below we describe the control laws in each state and the transition conditions
between states.

In Support and Toe Off states, proportional-derivative (PD) controllers are used at the hip to
servo body pitch, roll and yaw in order to maintain balance. Feed-forward torque is added to hip
roll to offset the weight of the body:

tau.left_hip_pitch = -body_pitch_gain * (0.0 - q.pitch) + body_pitch_damp * qd.pitch;

tau.left_hip_roll = body_roll_gain * q.roll + body_roll_damp * qd.roll

+ (HIP_OFFSET_Y * cos(q.roll) + BODY_CG_Z * sin(q.roll)) * ff_z;

tau.left_hip_yaw = body_yaw_gain * (q.yaw - q_d.yaw) + body_yaw_damp * qd.yaw;

where tau is the vector of joint torques, q is the vector of joint positions, and qd is the vector of
joint velocities. Note that only the left leg is presented in all the code fragments.

In Support and Toe Off states, the knee is locked to maintain height:

tau.left_knee = knee_gain * (0.0 - q.left_knee) - knee_damp * qd.left_knee;

In Support state, the ankle pitch is unactuated - only the passive ankle compliance is present.
The ankle roll is used to dampen lateral velocity, as described in Section 8.1.1. During Toe Off state,
the ankle is servoed to an angle using a PD controller in addition to its passive compliance:

tau.left_ankle_pitch = push_gain * (push_set - q.left_ankle_pitch)

- push_damp * qd.left_ankle_pitch;

if (q.left_ankle_pitch < ankle_limit_set)

tau.left_ankle_pitch = tau.left_ankle_pitch + ankle_limit_gain

* (ankle_limit_set - q.left_ankle_pitch)^2;

The transition from Support to Toe Off occurs when the heel lifts off the ground due to the
passive compliance of the ankle.

The robot transitions from Toe Off to Swing when the force on the foot falls below a certain
threshold. In both Swing and Straighten states the hip pitch is servoed to an angle using a PD
controller:

Swing: tau.left_hip_pitch = hip_gain * ((-hip_d - q.pitch) - q.left_hip_pitch)

- hip_damp * qd.left_hip_pitch;

Straighten: tau.left_hip_pitch = hip_gain * ((-hip_hold - q.pitch) - q.left_hip_pitch)

- hip_damp * qd.left_hip_pitch;
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Figure 8-2: sim 3D Simulation Algorithm. Each leg has a state machine which is in one of four
states. State transition conditions and actions in each state are shown.

The foot is servoed to be level with the ground so that the robot does not stub its toe. In
Straighten state, the hip roll is used for lateral foot placement, to control lateral velocity, as described
in Section 8.1.1. In Swing state, the knee is lightly damped while in Straighten state the knee is
locked straight using a PD controller:

Swing: tau.left_knee = -swing_damp_knee * qd.left_knee;

Straighten: tau.left_knee = straighten_gain_knee * (0.0 - q.left_knee)

- straighten_damp_knee * qd.left_knee;

The robot transitions from Swing to Straighten state after a constant amount of time passes.
Finally, the robot transitions from Straighten to Support state when the heel of the swing leg hits
the ground.

8.1.1 Lateral Stability

To control lateral stability in the frontal plane, we use foot placement and ankle torque. Since our
control algorithm treats the frontal plane dynamics and the sagittal plane dynamics separately, as
though they were decoupled, we use a conservative approach for the frontal plane. On each step we
attempt to place the foot such that lateral velocity will be absorbed into potential energy as the
body moves directly over the support foot. In this way the body is “captured” laterally so that no
matter what the forward velocity of the robot is, it will not start tipping back laterally until the
body has traveled forward over the support foot.

Figure 8-3 shows a simple pendulum model for determining foot placement. The initial kinetic
energy is

Ek =
1
2
mv2 (8.1)

The change in potential energy when the mass transfers from its initial condition to its highest
point is
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Controller Parameter Value Controller Parameter Value
SUPPORT SWING

Body pitch gain 100Nmrad Hip pitch set point 0.625rad
Body pitch damping 20 Nm

rad/s Hip pitch gain 23.7Nmrad
Body roll gain 200Nmrad Hip pitch damping 2.37 Nm

rad/s

Body roll damping 20 Nm
rad/s Max hip pitch torque 10Nm

Body yaw gain 30Nmrad Hip roll gain 92Nmrad
Body yaw damping 4 Nm

rad/s Hip roll damping 23 Nm
rad/s

Knee gain 30Nmrad Hip yaw gain 9.2Nmrad
Knee damping 10 Nm

rad/s Hip yaw damping 5.75 Nm
rad/s

Passive ankle set point 0.0rad Knee damping 0.25 Nm
rad/s

Passive ankle spring constant 400 Nmrad2 Ankle gain 4.0Nmrad
Ankle lateral set point 0.087rad Ankle damping 0.5 Nm

rad/s

Ankle lateral speed gain 0.36 rad
m/s Swing time 0.3sec

Ankle roll gain 100Nmrad STRAIGHTEN
Ankle roll damping 0.10 Nm

rad/s Hip pitch set point 0.55rad
TOE OFF Hip roll offset 0.048rad

Ankle pitch set point 0.3rad Hip roll lateral speed gain 0.36 rad
m/s

Ankle pitch gain 30Nmrad Hip roll lateral position gain 2.0 radm
Ankle pitch damping 0 Nm

rad/s Knee gain 1.0Nmrad
Swing transition foot force 100N Knee damping 1.2Nmsrad

Table 8.2: sim Control system parameters of the simulated bipedal walker.

∆Ep = mgl(1− cos θ) (8.2)

Setting the change in potential energy equal to the kinetic energy we get

cos θ = 1− v2

2gl
(8.3)

For small angle approximation, we get

θ ≈ v√
gl

(8.4)

We use equation 8.4 for determining lateral foot placement during the Straighten state. Hip
roll is servoed to a set point proportional to the robot’s lateral velocity (yd). The set point is also
proportional to the robot’s lateral position with respect to the support foot (r ceny). This second
term is a predictive one. The higher the lateral position, the faster the robot is accelerating, which
means more hip roll torque will be required.

q_d.left_hip_roll = -q.roll + swing_roll_off + yd_gain * yd + ceny_gain * r_ceny;

tau.left_hip_roll = hip_k * (q_d.left_hip_roll - q.left_hip_roll)

- hip_b * qd.left_hip_roll;

If the leg touches down at the proper angle, the mass will come to rest laterally at the highest
point, above the foot. However, there will be some error in the foot placement due to imperfections
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Figure 8-3: Simple pendulum model of the dynamics of the 3d simulation in the frontal plane. The
robot mass, m is lumped at a point. The leg is of length l at an angle θ from vertical. The foot has
a half width of wf , with torque τ being applied at the ankle. This model is useful for studying the
effects of foot placement and ankle torque on lateral velocity.

in the model and servo control limits. To overcome these errors, we use ankle torque, after the foot
is placed.

The ankle torque is limited due to the small width of the feet. A static analysis gives

−mgwf ≤ τankroll ≤ mgwf (8.5)

where wf is half the width of the foot. Any torque outside this range will cause the foot to rotate
about its edge. By examining the dynamics, one can show that the mass can be captured over the
foot if

v√
gl
− wf

l
≤ θ ≤ v√

gl
+
wf
l

(8.6)

We can show this in the following way. Suppose the pendulum is tipped to the left (θ positive).
The most restoring torque which can be added is τ = −mgwf , which will put the center of pressure
fully on the left edge of the foot. The dynamics of the system will then be

ml2θ̈ = mgl cos(θ)−mgwf (8.7)

Assuming a small angle approximation, the dynamics can be written as

θ̈ − g

l
θ =

g

l2
wf (8.8)

There will be a fixed point at which the mass can rest (but be unstable) at θ∗ = wf
l . Defining

θ′ = θ − wf
l , the dynamics can be rewritten as

θ̈′ − g

l
θ′ = 0 (8.9)

These are the same dynamics as the inverted pendulum with no ankle torque. Thus, by the same
energy argument above, we have θ′ = v√

gl
for capture to occur. Substituting back, we then get the

range of capture angles in Equation 8.6.

v√
gl
− wf

l
≤ θ ≤ v√

gl
+
wf
l

(8.10)

Equations 8.4 and 8.6 are plotted in Figure 8-4. The parameter values we use are wf = 0.05m,
l = 1.0m, g = 10.0ms2 . The middle line is the touch down angle required to have the mass stop at rest
above the foot (capture angle). The top and bottom lines show the range of angles at which the mass
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Figure 8-4: Range of Capture Angle vs. lateral velocity for a simple pendulum model with ankle
torque. The middle curve is the leg angle required at foot placement in order for the mass to stop
directly over the foot without using ankle torque. The outside curves show the range of leg angle
which can result in capture with the use of ankle torque.

can be captured at the top with the aid of ankle torque. We see that ankle torque can compensate
for errors in lateral foot placement, even with a narrow foot. In our simulation algorithm, we change
the set point of the stance ankle roll based on the lateral velocity for capture, from Equation 8.4:

tau.left_ankle_roll = yd_ankle_gain

* ((-flat_ankle_roll - yd_gain * yd) - q.left_ankle_roll)

- ankle_b * qd.left_ankle_roll;

where yd_ankle_gain and ankle_b are proportional and derivative position gains, flat_ankle_roll is
an offset position, and yd_gain is the amount to change the ankle position per unit lateral ve-
locity. This control law can also be viewed as equivalent to a PD controller with constant set point
and additional ankle torque proportional to lateral velocity if rewritten as

tau.left_ankle_roll = yd_ankle_gain * (-flat_ankle_roll - q.left_ankle_roll)

- ankle_b * qd.left_ankle_roll

- yd_ankle_gain * yd_gain * yd;

8.1.2 3D Simulation Results

The simulation parameters were first manually tuned, and then fine tuned using a genetic algorithm
with efficiency as its cost function. Efficiency was computed as distance traveled divided by total
joint energy after ten seconds of walking. Total joint energy was computed by integrating the total
joint power which is the sum of the absolute values of the mechanical power at each joint:

Etot =
∫
Ptot dt, Ptot =

∑
joints

|Pjoint|, Pjoint = τjoint θ̇joint (8.11)

After several generations, natural looking walking resulted. Time-elapsed animations are shown
in Figures 8-5 and 8-6. The drawings on the left show the swing phase of one leg. The drawings on
the right show several steps. The right leg is dotted while the left leg is solid. Lines show the path
of the tips of the feet and the hip trajectory. Results are plotted graphically in Figure 8-7.

We see that the simulated robot walked at a moderate speed (approximately 0.8 m/s) and had a
natural looking gait. It is interesting that the algorithm does not contain any explicit speed control
mechanism, yet speed is stabilized. We speculate that this is due to the natural system dynamics,
in the same way that speed is naturally stabilized in passive dynamic walkers.
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Figure 8-5: sim Elapsed-time snapshot of the 3d simulated robot walking data. The left leg is
dotted while the right leg is solid. Lines show the path of the tips of the feet and the hip trajectory.
The snapshots on the left are spaced at 0.1 seconds and show one swing phase. The snapshots on
the right are spaced at 0.4 seconds and show several steps.

Figure 8-6: sim Elapsed-time isometric snapshots of the 3d simulated robot walking data showing
lateral displacement of the pelvis.
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8.2 Conclusions

Three dimensional bipedal walking can be achieved by a simple control algorithm which exploits the
natural dynamics of a kneecap, compliant ankle, and passive swing leg. Lateral foot placement and
ankle torque can be used for lateral stability. The resultant motion is smooth and efficient. This
work should be applicable to the real 3D bipedal robots, further bridging the gap between passive
dynamic walkers and powered bipedal robots.

The simulation settles on a stable speed of walking of approximately 0.8 m/s. However, nowhere
in the controller is speed explicitly controlled. We believe that the speed is stabilized in a similar
way to passive dynamic walking machines. That is, if the robot goes too fast, it naturally takes a
longer step due to the natural swing leg dynamics and hence slows down on the next step. Similarly,
if the robot moves too slowly, it naturally takes a shorter step and hence speeds up on the next step.
This behavior has also been observed in our experimental robot, Spring Flamingo, as described in
Chapter 5.
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Chapter 9

Conclusions

Exploiting Inherent Robustness

Because the walking problem is inherently robust, simple, imprecise, control techniques can be used
to control bipedal walking. Spring Flamingo walked using a simple set of control strategies that
were easy to develop, easy to understand, and easy to implement. These strategies needed to be
only slightly modified in order to control the robot to traverse a ramp and rolling terrain. In short,
planar bipedal walking is easy to achieve despite being difficult to analyze mathematically.

By tuning the control parameters by hand, one gains insight into how the parameters relate to
the resultant walking. This insight in turn helps speed up the tuning process.

Exploiting Natural Dynamics

Much of the requirements of the walking controller can be achieved through the natural dynamics
of the walking mechanism. Joint limits prevent the knee from inverting; a springy ankle naturally
transfers the center of pressure forward as the robot walks forward; and the swing-leg swings natu-
rally like a pendulum. We presented an algorithm for Spring Flamingo which exploits these natural
mechanisms. This work will help bridge the gap between powered bipedal walkers which typically
do not exploit their natural dynamics, and passive dynamic walkers, which rely completely on their
natural dynamics in order to walk.

Walking Fast

We have provided evidence that in order to walk quickly, one must swing their swing-leg and tran-
sition it into a stance leg quickly. Therefore, in order to make Spring Flamingo walk quickly, we
concentrated on actively swinging the leg using trajectory tracking techniques for the hip. By doing
so, we achieved walking at velocities up to 1.25ms , which while being only moderate speed for a
human, is quite fast for current walking robots.

3D Simulation

Three dimensional bipedal walking can be achieved by adding lateral balance to a planar algorithm.
We used lateral foot placement and ankle torque to control lateral stability in a 3D walking simula-
tion. This work should be applicable to the real 3D bipedal robots, further bridging the gap between
passive dynamic walkers and powered bipedal robots.
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9.1 Discussion

9.1.1 How far can this approach get us?

There are many limitations to the approach taken in this thesis for developing walking algorithms.
For a robot with a different shape, size, or number of legs the algorithms will have to be significantly
rewritten. If the properties of the robot change, the control parameters will need to be retuned. In
order to perform a new task, an entirely new algorithm needs to be rewritten. By concentrating
specifically on bipedal walking we have developed algorithms which are specific to the walking
problem. However, we believe the principles of exploiting inherent robustness in the problem and
natural dynamics in the solution are universal.

Furthermore, using what we have learned about walking and others have learned about running,
it may now be feasible to attempt other tasks. We believe that the approach of developing simple
algorithms based on an understanding of simple physical models can be extended to many exciting
problems. These include jumping, skipping, and simple gymnastics maneuvers. As Hodgins and
Raibert showed [Hodgins & Raibert (1990)], once you have a good running algorithm, performing
flips requires only a simple extension. Perhaps performing robotic Tai-Chi will only require simple
extensions to the walking algorithm.

Of course in order to tackle these challenging problems, it is wise to have a well stocked tool box
of approaches. It is useful to explicitly understand the approaches which were used in this thesis,
and others which may have aided, as described below.

9.1.2 Approaches to Developing Bipedal Walking Robots

Like any engineering problem, bipedal walking can be pursued with a number of different techniques.
I list four broad categories of tools here. These are reverse engineering, automation, mathematical
analysis, and intuition. Each tool has its advantages and disadvantages. Since bipedal walking is a
fairly complex problem, it makes sense to try to use techniques from all four categories.

Unfortunately, some methods are often religiously promoted over others. For example, using
intuition to develop heuristic controllers is often frowned upon because it is not rigorous. Mathe-
matical analysis is often criticized because it is too limited and complicated. Reverse engineering
nature is considered cheating by some and too limited since we do not know much about how animals
control walking. Automation through learning or parameter search is not rigorous and does not give
insight into why the learned parameters are good.

In this thesis, I consciously attempted to avoid such arbitrary arguments and embrace all four
techniques to whatever extent I could. However, intuition was promoted the most as we felt that
using simple control strategies based on physical intuition was the quickest route to getting the robot
to walk. Future work will focus on using all four techniques to their fullest extent.

Intuition

Intuition is a powerful tool for developing bipedal control algorithms. Simple heuristic control laws
can be developed such as “move the center of pressure on the stance foot forward in order to slow
down.” Intuition can be obtained through experience, by studying simple models of bipedal walking,
and by simply asking what you, yourself, are doing when performing a certain maneuver such as
balancing on one leg. The major advantage of using intuition in developing control laws is that
the barrier between understanding bipedal walking and controlling bipedal walking is as small as
possible.

In this thesis intuition was used extensively in developing control strategies, implementing them,
and tuning their parameters. Keeping the control intuitive allows quick modification, debugging,
and tweaking since all the control laws and parameters have a physical interpretation.
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Reverse Engineering

Bipedal walking robots are copies of their natural counterparts. By putting two sticks on the end of
a torso, we are already using reverse engineering. Of course we can extend reverse engineering since
anything we can learn about how animals control walking can potentially be used to control bipedal
robots. This knowledge is currently limited but is growing rapidly.

In this thesis reverse engineering was used to help answer more of the “what” than the “how”.
For instance, when pushed sideways one usually puts their leg out and places their foot in a place
which allows them to slow down and catch their balance. The neural mechanisms of how this is
achieved are currently unknown. Reverse engineering can motivate the intuitive strategy of “use
foot placement to control lateral speed when moving too quickly sideways” but implementing this
strategy requires more insight and experimentation. Biological systems also motivate the use of
natural dynamic mechanisms to simplify the control of walking. In future work, as more is learned
about the biology of walking, reverse engineering can be used to a fuller extent.

Mathematical Analysis

There is a lack of examples in which traditional control theory is used to synthesize control laws for
bipedal walking robots. There are only limited examples of using traditional control theory to fully
prove stability of existing control laws. These are both difficult problems and are being actively
pursued by many researchers.

In this thesis, we used mathematical analysis to a more limited extent. Simple mathematical
models of walking were used to help develop control rules for various aspects of bipedal walking and
for increasing our understanding and intuition of bipedal walking. The qualitative nature of these
models helped to develop control strategies, while the quantitative nature in some cases helped tune
the parameters.

Mathematical control tools can also be used for accomplishing sub-tasks of the walking problem.
For instance, in Chapter 7 and Appendix B we used adaptive control techniques to swing the hip
quickly during swing in order to achieve faster walking.

Automation

Automation can be applied through learning, adaptation, or automatic search of parameter spaces.
Automation techniques are often more powerful and general purpose than other techniques. However,
they often are used as black boxes and thus sometimes do not aid in understanding the problem at
hand, even if they produce a good solution.

In this thesis we used both manual tuning and genetic algorithms to automatically search pa-
rameter spaces. The genetic algorithms were used only in simulation due to the large number of
trials required. Adaptively tuning parameters and automatically learning control strategies is an
exciting possible area for future work in bipedal walking.

9.2 Further Work

9.2.1 3D Walking Robot

All of the experimental work on a real robot in this thesis was for planar walking. Not only is a
planar walker impractical for real world tasks, it also misses a lot of the flavor of human walking.
Whether the goal of bipedal robot research is to make a practical robot, or to help study human
walking, it is therefore important to make a fully 3D robot.

The 3D simulation was a start at applying the techniques of this thesis to 3D robots, but
simulation has a lot to be desired. We are currently building a 12 degree-of-freedom (3 in each hip,
one in each knee, 2 in each ankle) biped. Since the simulation parameters were determined based
on the physical robot, we are confident that similar algorithms will work on the real robot. We are
currently working on starting, stopping, and balancing when pushed sideways, and have been fairly
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successful in simulation. Walking sideways and at an angle, and dynamically turning while walking
are two challenging maneuvers which we will tackle after straight walking is achieved.

9.2.2 Understanding Human Walking

We believe that one of the most relevant applications for building a biomimetic robot, such as a
bipedal walker, is to help understand its real-life counterpart. While the algorithms presented in
this thesis were based more on an abstract model of walking than they were in accurately replicating
human walking, many of the concepts apply to both. For example, understanding the simple models
presented in Chapter 3 helps us to understand why humans use certain strategies to balance or
walk. Understanding the limits to maximum walking speed with the robot motivated experiments
on humans which showed that both robots and humans are limited by their minimum swing time.

As more is learned about human walking, the feasibility of the hypotheses can be tested on
bipedal robots. Eventually a complete model of how humans control walking may be developed
and verified on a robot. Besides being useful for verification, bipedal robots may also be useful
for discovering the aspects of walking which are important and what to look for when studying
human walking. Knowledge gained from human walking will help improve the algorithms used for
the robots while knowledge gained from the robots will help further understand human walking. It
therefore makes sense for more research groups to become multi-disciplinary with people experienced
in biomechanics, neuroscience, robotics, and other fields working together for the common purpose
of understanding the mechanics and control of human walking.

9.2.3 Central Pattern Generators

Central Pattern Generators (CPGs) are found in many animals which locomote in rhythmic ways.
There is evidence that CPGs are used in swimming lamprey [Stein et al. (1997)], walking cats
[Pearson (1976)], and even walking humans [Wickelgren (1998)].

Several researchers in the robotics community have showed that CPGs may be useful for robotic
tasks as they have been shown to have very good entrainment, robustness and internal stability prop-
erties. Williamson (1999) used CPGs to control robotic arms which can perform simple juggling,
turn a crank, and play with a slinky. Taga (1995a,b) used CPGs in the control of a bipedal walk-
ing simulation. However, we are unaware of anyone who has successfully applied Central Pattern
Generators to a real bipedal robot. This is clearly an important area of future work.

9.2.4 Multi-Joint Muscle Groups

Animals have muscles which cross several joints [Kapandji (1982)]. For example, the gastrocnemius
activates both the ankle and the knee; the rectus femoris activates both the knee and the hip.
Perhaps multi-joint muscles have advantages in simplifying control or in achieving higher efficiency.

Simplifying Control

It may be possible to design and construct the actuators and actuation connection of a robot in
order to simplify the control. For example, joints which have correlated torques during a portion of
the walking gait may benefit from an actuator which passes over both joints with a lever arm ratio
corresponding to the torque ratio. Perhaps instead of actively computing the desired torques, that
actuator could be fired in more of a on-off fashion during that phase. Also, separate actuators may
be wired in groups for the same effect. The robot design or hard-wiring may simplify the commands
from the higher level control centers.

Efficiency

Looking at Figure 7-2 we see that during the swing phase when Spring Flamingo is walking fast, the
hip does a lot of positive work while the knee does a lot of negative work. Since there are separate
actuators for both joints, the total work done by the robot is the sum of the absolute values of the
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hip and knee work. However, if there were a multi-joint actuator actuating both the hip and the
knee and the lever arm at both joints was properly chosen, perhaps that actuator could apply the
positive hip power minus the negative knee power, resulting in increased efficiency. This would be
accomplished since the actuator would have to move a shorter distance due to the hip requiring
actuator motion in one direction and the knee requiring actuator motion in the other direction
during the first part of the swing phase.

9.2.5 Producing a Practical Robot

For a bipedal robot to be practical it must be able to survive falls and stand back up; and work
for extended periods of time with on-board power. These are two challenging engineering problems.
Batteries are still too heavy for the amount of energy they provide. Fuel cells have a lot of promise but
are not yet economically available in the required sizes. Combustion engines or turbine generators
could easily provide the required power but are noisy and create exhaust and thus are less practical
in an indoor environment. Eventually an adequate energy source will be developed, especially since
the automobile and cell phone markets will drive the technology.

Making the robot survive a fall will require extensive engineering design but can be done. Stand-
ing up from a fall will require either arms or some clever method such as grappling onto a nearby
object.

All these issues are solvable but will take lots of work. Eventually we will be able to develop
a biped which is mechanically robust and reliable and has a lot of endurance. These robots will
be useful in situations where they can be tele-operated or semi-autonomous, such as amusement
parks, nuclear power plants and other industrial settings, and as home entertainment robots. Being
useful in autonomous situations, such as working around the house without supervision, however,
will require many more advances in Artificial Intelligence.

9.2.6 Learning to Walk

Except for tuning simulation parameters with a genetic algorithm, all of the algorithms developed in
this thesis were manually derived and manually tuned. In order to reproduce this work for another
robot of a different size or configuration, the work would all have to be repeated. Machine Learning
has the potential to make the process faster and perhaps even achieve better performance. Ideally,
one could demonstrate a new maneuver to the robot and it would be able to practice on its own
until it was able to perform the task. This has been accomplished to some extent with simple tasks
such as balancing an inverted pendulum with a robot arm. Whether it’s possible to teach more
complicated tasks by demonstration without the learner having higher cognitive powers is an open
question. However, there most likely is a way to use learning as a way to augment the manual process
of algorithm development and tuning. Tuning parameters based on cost function maximization is
one way, as was achieved using genetic algorithms in this thesis. Such techniques can surely be used
to a fuller extent in future work.

9.2.7 Summary

This thesis has presented an approach to the control of bipedal walking which is simple and efficient
and results in fairly smooth and natural walking. Several algorithms were presented for a planar
walking robot and a 3D walking simulation.

In Chapter 2 we gave background for this thesis, consisting of previous powered and passive
bipedal walking robots, Virtual Model Control, and Series Elastic Actuators.

In Chapter 3 we presented several simple models of bipedal walking. These models helped build
physical intuition into walking, which aided in algorithm development.

In Chapter 4 we presented a simple control algorithm for planar bipedal walking. The algorithm
was physically based on the simple models presented in Chapter 3. The algorithm used a state
machine and simple control strategies based on physical intuition. Simple modifications were made
to the algorithm for walking over slopes and rolling terrain.
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In Chapter 5 we presented an algorithm which relied on the natural dynamics of a knee-cap,
compliant ankle, and passive swing-leg. These mechanisms simplified height control, speed control,
and swing-leg control. Speed was found to be self-stabilizing for slow speeds. That is, there was no
explicit control mechanism which fed back forward walking speed.

In Chapter 6 we hypothesized that minimum swing time is a major limiting factor of maximum
walking speed on Earth. Evidence to support that hypothesis was presented. This knowledge was
used in the fast walking algorithms of Chapter 7.

In Chapter 7 we presented an algorithm for walking fast. The algorithm focused on swinging the
swing-leg quickly. To do so we used feed-forward inverse dynamics (computed torque) plus active
feedback.

In Chapter 8 we presented an algorithm for 3D walking. The algorithm was an extension of
the planar algorithms with lateral speed control achieved through lateral foot placement and ankle
torque.

While this thesis showed one approach for achieving bipedal walking, there are many other
approaches and it is hard to say which is the best. There are many avenues for further work
in controlling bipedal walking robots. Eventually this work will lead to better understanding of
walking and more competent walking robots.

However, since humans are an obvious comparison with bipedal robots, there will always be
more things to work on. Once walking and running and transitioning between the two are fully
conquered, we can try ballet, Irish dance, long jumping, pole vaulting, mountain climbing, etc., etc.
Studying bipedal maneuvers should keep researchers busy for centuries to come. Perhaps the best
cost function to judge today’s robots is how well they inspire future generations of walking robot
builders to lead the charge.
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Appendix A

Experimental Apparatus

High quality experimental apparatus are crucial in legged robotics. Actuators must produce sufficient
torque, speed, and power. The structure must be solid and reliable. Electronics must be sufficiently
low in noise and be reliable. Interface software must be easy to use and responsive.

Unfortunately, many robotics projects fail not because of a lack of ideas, but because of poor
mechanical design and construction. The amount of time, effort, skill, and money required to make
a good robot is universally underestimated. Many legged robot projects are undertaken by computer
scientists (as was this one). Therefore, it is extremely important to stress the importance of the
mechanics. Common misperceptions are that the control is more important than the mechanics, or
worse yet that clever control can make up for poor mechanics.

The legged robots which have been exceptionally successful – Raibert’s hoppers, the Ohio State
adaptive suspension vehicle, Honda P2 and P3 humanoids, and the Mechanical Engineering Lab’s
MELTRAN, to name a few, all have good design and construction in common. In some cases good
mechanical construction has made the difference. For example, the Honda humanoids use a control
algorithm very similar to that used by the Waseda robots over the last 30 years. However, public
and even professional perception of the Honda robot seems to be much more positive than that for
the Waseda robots.

For this thesis, good design and construction of the experimental robot and other hardware was
explicitly stressed from the beginning. Over a year was spent on design and construction. One of
the major goals was to produce a “robotic-workhorse” – one which can be used for many years with
a high mean time between failure and a short down time. In this chapter we discuss the resulting
experimental apparatus.

A.1 Overall Robot Setup

Figure A-1 shows the experimental setup. The robot, Spring Flamingo, is attached to a planarizing
boom which constrains the robot to the sagittal plane and forces the robot to walk around a circle
of 6 foot radius. While the robot’s control computer is on-board, power supplies and motor ampli-
fiers are off-board on the floor with power cables running along the boom. An interface computer
communicates with the robot’s digital signal processor through an RS-232 serial line.

Spring Flamingo weighs approximately 30 lbs (13.5 kg) and is 3 feet (90 cm) tall. The robot has
an actuated hip, knee, and ankle on each leg for a total of six actuated degrees of freedom. The
joints are actuated by identical Series Elastic Actuators [Pratt & Williamson (1995)] located in the
upper body. Cable drives transmit power from the actuators to the joints. Rotary potentiometers
measure the joint angles. Load Cells in the feet measure the ground reaction forces.

Figures A-3, A-2, and A-4 show the top, side, and front views of the robot’s body. Electronics
include a computer consisting of a Digital Signal Processing Board, Analog Board and Breakout
Board; two Power Boards; two Strain Gage Conditioning Boards, and six Force Control Boards
attached to the six actuators which are distributed about the body. Two potentiometers are mounted
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Figure A-1: Experimental setup. The robot, Spring Flamingo, is attached to a planarizing boom.
Motor amplifiers and power supplies are located off-board with motor cables running along the
boom. An interface computer communicates to the robot through an RS-232 serial cable.
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Knee ActuatorKnee Actuator

Hip ActuatorHip ActuatorKill SwitchKill Switch

Ankle ActuatorAnkle Actuator

Figure A-2: Side view of Spring Flamingo. The actuators are located in the body, transmitting
torque to the joints through cables. A kill switch located on the body is used to disable the motor
amplifiers. There are also other external kill switches.

on the body for tuning control parameters while the robot is walking. A kill switch is attached to
the robot for disabling power to the motors.

Figure A-5 shows details of the hip and knee. At the hip, one set of cables passes over a 1.75in
diameter pulley and is fixed at the hip. The other two sets of cables pass over 1.2in diameter pulleys
and continue on to the knee and ankle. At the knee one set of cables pass over a 2.5in diameter
pulley and become fixed while the other set passes over a 1.2in diameter pulley and continue to the
ankle (Figure A-6). At the ankle, the cables pass over a 1.75in diameter pulley and become fixed.

All of the pulleys freely rotate about bearings on a shaft. Each shaft is rigidly connected to the
bottom link of each joint. A potentiometer measures the angle at each joint.

Limit stops prevent the knee from hyper-extending and help naturally transfer the center of
pressure on the foot forward as the robot moves forward (see Chapter 5).

Load cells on the feet are used to measure the ground reaction forces and determine the location
of the center of pressure. The load cells were not initially on the robot. In the control of Chapters
4 and 5, ground reaction forces were not used. Load cells were added and used in the fast walking
control of Chapter 7.

Rubber wheels (Figure A-6) soften the landing of the foot on the ground, and produce traction.
They also allow the foot to swivel with the sagittal plane of the body as the robot moves forward.
This swivelling is due to the robot walking in a circle, while the links of the robot remain in the
same plane, parallel to the end of the boom.
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On-Board ComputerOn-Board Computer

Tuning PotsTuning Pots

Figure A-3: Top view of Spring Flamingo. The on-board computer system consists of a Digital
Signal Processor Board, an Analog Board, and a Breakout Board. Two tuning potentiometers are
available for hand-tuning control parameters while the robot is walking.
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Figure A-4: Front view of Spring Flamingo. Two Power Boards supply power to the on-board
computer, a Strain Gage Board, and six Force Control Boards. The Strain Gage Boards condition
the signals coming from the load cells located in the feet. The force control boards control the
actuator force with a proportional-derivative (PD) controller, servoing motor current as a function
of force error.
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Figure A-5: Hip and knee detail. Cables from all three of the legs actuators pass over pulleys at the
hip. Those passing over the 1.75in diameter pulley are then fixed to the upper link of the leg. The
other two pass over 1.2in diameter pulleys and go on to the knee and ankle. At the knee one cable
passes over a 2.5in pulley and is fixed to the leg’s lower link. The other passes over a 1.2in pulley
and continues to the ankle. A potentiometer at each joint measures the joint angle. A knee stop
prevents the knee from inverting. The cables are all terminated with cable crimps.
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Figure A-6: Ankle and foot detail. The cable driving the ankle passes over a 1.75in diameter pulley
and is fixed to the foot. A limit stop naturally causes the center of pressure on the foot to travel
forward as the robot moves forward. Load cells measure the ground reaction force. Rubber wheels
allow the foot to swivel. The first version of the foot did not have load cells and was used for the
experiments of Chapters 4 and 5. The new version, shown here, was used for the experiments of
Chapter 7.
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Table A.1: Continuous torque and maximum speed specifications for the joints. During moderate
speed walking, the robot stays within these limits.

Joint Range Torque Speed
Hip ±45o 14.4Nm 6.9 rad/sec

Knee 0o − 90o 20.6Nm 6.9 rad/sec
Ankle 15o − 45o 14.4Nm 9.9 rad/sec

Table A.2: Maximum torques and speeds during fast walking. The torques at the joints occassionally
exceed the continuous specifications by up to 66%.

Joint Torque Speed
Hip 18Nm 7.0 rad/sec

Knee 28Nm 7.0 rad/sec
Ankle 24Nm 10.0 rad/sec

A.2 Joint Technical Data

From previous work on Spring Turkey [Pratt (1994)] and from walking simulations, joint ranges of
motion, torque, and speed specifications were determined. These specifications are listed in table
A.1. Figure A-7 shows the robots joints at their maximum ranges of motion.

A.3 Actuators

Six identical Series Elastic Actuators [Pratt & Williamson (1995)] provide power to the joints. Series
Elastic Actuators provide good force control with a large dynamics range, and shock tolerance. A
spring is intentionally placed in series between the motor and the load. By measuring the spring
deflection, the output force can be deduced. Feedback is then used to control the output force.

Spring Flamingo’s Series Elastic Actuators are shown in Figure A-9 and A-8. A brushed DC
motor is attached to a timing belt with a 2.5 reduction. The timing belt drives a ball screw with
a lead of 0.3175mm/rev (0.125in in/rev). The ball nut pushes a block which pushes on four die

+-45o+-45o
90o90o +15,

-45o
+15,
-45o

Figure A-7: Hip, knee, and ankle range of motion.
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Linear PotentiometerLinear Potentiometer

MotorMotor

Timing BeltTiming Belt

Cable
Attachment
Cable
Attachment

Idler PulleyIdler Pulley

Figure A-8: Actuator top view. A motor drives a timing belt which is attached to a ball screw.
The ball screw pushes a block which pushes on four die compression springs. The springs then push
on clamps which are clamped to carbon fiber tubes which drive the output. In the robot a cable
is attached to the actuator output and then passes over an idler pulley. A linear potentiometer
measures the spring deflection and hence the actuator output force.

compression springs each with a spring constant of 30900Nm (176 lbsin ). The four springs together
thus have a combined spring constant of 123600Nm (704 lbsin ). The springs push on clamps which are
clamped to carbon fiber tubes. The output of the actuator is attached to a cable which winds around
an idler pulley and travels to the joint.

Components were selected in order to meet the specifications in Table A.1. The motor has a
maximum speed rating of 1095 radsec (10464 RPM) and a continuous torque rating of 0.13Nm (18.6oz−
in). After passing through the 2.5 reduction of the timing belt, and the 0.3175mm/rev reduction
of the ball screw, this translates to 647 Newtons (146 pounds) of force, and a maximum speed of
0.221 meters per second (8.72 inches per second).

Since the hip and ankle pulleys are 0.044m (1.75in) in diameter and the knee pulley is 0.064m
(2.5in), this corresponds to 14.4Nm maximum torque and 9.9rad/sec maximum speed at the hip
and ankle and 20.6Nm and 6.9rad/sec at the knee.

During the moderate speed walking of Chapters 4 and 5, the joint torques and speeds stay within
these ranges. However, during fast walking of Chapter 7, the continuous ratings of the actuator are
significantly exceeded. Table A.2 show the values achieved during fast walking. We see that the
speed limits are matched and the torque limits are exceeded by up to 66%. This results in the
motors getting overheated within a couple minutes of walking. Occasionally a motor will burn out
and be replaced.

The bandwidth (-3dB frequency) of the actuators is approximately 14 Hz. Force response bode
diagrams, taken with no load motion, are shown in Figure A-10. This figure was acquired by
commanding a chirp signal as the desired actuator force:

Fd = A sin(2π1.5t2) (A.1)

for 0 < t < 10 seconds. This gives excitation frequencies from 0 to 30 Hz. A was kept low enough
to prevent saturation. Five chirps were commanded while sampling the actual force output. These
were then averaged to reduce random noise. The bode diagrams were generated using Matlab’s spa
command. One standard deviation confidence intervals are dashed. We see that the -3dB cutoff
frequency is approximately 90 rads (14Hz).
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Figure A-9: Actuator Bottom view.
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Figure A-10: Experimentally determined bode diagram of actuator force response. The -3dB mag-
nitude cross-over point is at approximately 90 rads (14Hz).
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A.4 Joint Torque De-Coupling

Since the cables traveling to the ankle pass over the hip and the knee and since those traveling to the
knee pass over the hip, the resultant torque at a joint is a function of all three of the leg’s actuator
forces:

[ τh
τk
τa

]
=

Rh Rc Rc0 Rk Rc

0 0 Ra

 f1

f2

f3

 (A.2)

where τh, τk, and τa are the torques at the hip, knee, and ankle; Rh, Rk, Ra are the radii of the
pulleys with terminating cables at the hip, knee, and ankle; Rc is the radius of the pulleys with cables
continuing to the lower joints; and f1, f2, and f3 are the actuator forces with cables terminating at
the hip, knee, and ankle. The sizes of the pulleys areRh = 0.0222m(0.875in),Rk = 0.0318m(1.25in),
Ra = 0.0222m(0.875in), Rc = 0.0152m(0.6in). To determine what the actuator forces should be,
given desired joint torques, we must invert the matrix in Equation A.2:

 f1

f2

f3

 =


1
Rh

−Rc
RhRk

R2
c

RhRkRa
− Rc

RhRa

0 1
Rk

−Rc
RkRa

0 0 1
Ra


[ τh
τk
τa

]
(A.3)

A.5 Electronics

Figure A-11 shows the layout of Spring Flamingo’s electronic components. The control program
is run at a update rate of 3.5 milliseconds on a Digital Signal Processing Board made by Digital
Designs and Systems, Inc. (www.dideas.com). The DSP Board has a Texas Instruments TMS-C32
DSP chip and 4 Megabytes of RAM. The DSP is stacked on an Analog Board, also made by Digital
Designs, and a Breakout Board, made by the author. The Analog Board has 32 channels of analog
to digital conversion, 32 channels of digital to analog conversion and 16 digital I/O lines, which is
more than sufficient for Spring Flamingo. The Breakout Board filters the incoming signals from
the joint potentiometers and differentiates them to obtain velocity information. It also reads the
foot forces from the Strain Gage Boards and sends the desired actuator forces to the Force Control
Boards. Photographs of these boards are shown in Figure A-12. Schematics for the Breakout Board
are in Figures A-17 through A-22.

The DSP, Analog, Breakout, and Strain Gage Boards are powered by the Power Board shown in
Figure A-14 with schematic in Figures A-23 and A-24.

The Strain Gage Board is shown in Figure A-14, with schematics in Figures A-27 and A-28. It
conditions the signals coming from the two load cells in each foot.

The output from the algorithm running on the DSP is the desired force in each of the actuators.
This signal is sent from the Breakout Board to the Force Control Boards. The Force Control Boards,
shown in Figure A-13, close the force control loop of the actuators. Linear potentiometers measure
the force in each actuator. The Force Control Board implements a PD controller on this signal and
sends a signal representing the desired current to the motor amplifiers. The PD gains were tuned
such that the closed loop response of the actuators had a roll-off frequency of 20Hz and a damping
ratio of 0.7.

An interface computer communicates user commands with the Digital Signal Processor and
receives data from the robot over an RS-232 serial line. While the robot is walking, all the joint
angles, velocities, control parameters, and any intermediate variables can be recorded on the robots
internal memory at any rate up to once every 3.5 milliseconds. This data can then be uploaded to
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Figure A-11: Electronics Layout. See text for details.

the interface computer, which can display the data in graphical format, as shown in Figure A-15.
The data can also be imported into Matlab or other graphing and analysis packages.

A.6 Calibration

All of the sensors and actuators were calibrated either experimentally or analytically based on
specifications. The joint potentiometers were calibrated by measuring the voltage reading with
the joint straight and bent at 90o. Since the measured slopes were all within 15%, we chose an
average value and used it for all the joint potentiometers. Joint velocity calibration was determined
analytically, based on the computed gain of the differentiation circuits. Actuator force was calibrated
experimentally by measuring the force on a spring scale for various output voltages. Since the rate
was within 15% for all the actuators, we chose an average value and used it for all the actuators. Foot
force sensors calibration was determined analytically by specifications from the sensor manufacturer
and computed gains of the strain gage conditioning circuit. Zero offset calibration for all the sensors
was achieved by suspending the robot with all of its joints straight and averaging 1000 sensor
readings.

A.7 Conclusion

Spring Flamingo meets all the required specifications determined by physical simulations. The robot
is mechanically sound and has reliable electronics hardware. Thus it has achieved the original goal
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Figure A-12: DSP Board, Analog Board, and Breakout Board forming the on-board computer
system.

Figure A-13: Force Control Board which implements a PD controller to control the actuator output
force.

132



Figure A-14: Power Board (left) and Strain Gage Conditioning Board (right). The Power Board
powers the other low-power electonics. The Strain Gage Board conditions the signal from the load
cells in the feet.

Figure A-15: “Legplot”, a graphical display and analysis program showing plots of data uploaded
from Spring Flamingo’s on-board computer system.
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Figure A-16: Spring Flamingo with broken leg. This was the only significant failure of the robot.
Luckily, the carbon fiber tube was easily removed by heating the glue to 250 degrees and replaced
with a spare.

of becoming a robotic workhorse, operating for 3 years with very little down time. We estimate that
the robot has walked over 15 miles in that time! Much of the credit for the success of the robot, as
with all successful robots lies in the quality design and construction. We spent over a year designing
and building the robot. Parts cost was approximately $25,000. Major off-the-shelf mechanical and
electrical parts are listed in Table A.3. Parts suppliers are listed in Table A.4 and A.5.

The only significant failure was a broken leg which occurred due to the leg tube striking the
body whenever the robot fell. Eventually a crack was formed and the tube split in two, as shown in
Figure A-16. Occassionally a cable breaks which requires a 30 minute repair job.

Slow communication from the robot to the interface computer, due to a slow (38Kbaud) RS-
232 serial line requires 1 minute to download the robot program and up to 8 minutes for recorded
data to be uploaded to the computer. This caused some delay in analysis, tuning, and debugging
turn-around. Our new robots all have ethernet communications which effectively eliminate this
delay.
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Figure A-17: Breakout Board Schematic Page 1 of 6.
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Figure A-18: Breakout Board Schematic Page 2 of 6.
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Figure A-19: Breakout Board Schematic Page 3 of 6.
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Figure A-28: Strain Gage Conditioning Board Schematic Page 2 of 2.

146



Table A.3: Parts List of off-the-shelf mechanical and major electrical parts. Only listed are parts
required for one robot. Significant spares were also purchased. This list does not include machined
parts.

Quantity Description Supplier Price
1 TI C30 DSP System Digital Designs 3200.00
4 1.0in ID, .06in T, 12in L CFRP Tube Revolution Enterprises 45.00
12 0.375in OD, 3/16in ID, 14in L CFRP Tube Revolution Enterprises 140.00
1 2.0in ID, .08in T, 120in L CFRP Tube Quality Composites 550.00
1 2.0in ID, .08in T, 27in L CFRP Tube Quality Composites 122.00
6 FAI-035 24V Motors, Specially Wound Astroflight 600.00
6 85206 Ball Screw Assembly Motion Systems 400.00
24 D-1123-A Die Compression Springs Century Spring 120.00
7 Bourns 6637S-1-502 Potentiometer Newark 12F7102 238.00

1 Case Dexter-Hysol EA9430 Eng. Adhesive Industrial Sales 97.50
1 Case Dexter-Hysol 1C Epoxy Patch Industrial Sales 100.00

6 Model 303 12A Peak Brushed Motor Amp Copley Controls 1650.00
250 ft. 2054SN Flexible Cable Sava Industries 512.50

100 End Crimps Sava Industries 20.00
8 THA-100-Q Thru Hole Load Cells Transducer Techniques 3600.00
6 A 6R23M041060 Timing Belt 41 Grooves Stock Drive Products 25.00
6 A 6A23-025NF0608 Pulley 3mm, 25 grooves Stock Drive Products 60.00
6 A 6A23-010DF0604 Pulley 3mm, 10 grooves Stock Drive Products 54.00
60 A 7Y55-FSS5025 Flanged Abec3 Bear. .25 Bore .50 D Stock Drive Products 310.00
4 A 7Y55-PSS16275 Bear .75d 1.625D .4375W Stock Drive Products 134.32
4 A 7Y55-FSS8737 Bear .375d .875D .2812W Stock Drive Products 48.48
20 S435 .25D 3.5L Stainless Ground Shaft Berg 36.20
250 SS2-32-A Shaft Spacer .25d .375D .063W Berg 350.00
5 S4-60 .25D 6.0L Stainless Ground Shaft Berg 13.05
2 PZ-34 Shoulder Screw .3745d .5D .3130L Berg 9.84
2 PZ-35 Shoulder Screw .3745d .5D .3755L Berg 10.08
6 PTN-050 Linear Sensor 2.3in. Travel Novotechnik 120.00
6 S-170 Sensor Slider Novotechnik 33.00
50 A-SBP-6/6 Rulon-J Bear 3/8ID 9/16OD 3/8L Small Parts 211.00
30 A-SBP-6/12 Rulon-J Bear 3/8ID 9/16OD 3/4L Small Parts 127.00
6 A-HNTT-1420 Titanium Nut Small Parts 8.00
12 SR4A Ang. Cont. Bearing 1/4id 3/4od Champion Industries 240.00

250ft AS879 4 Cond. 28 G. Sh. Wire Cooner Wire 370.00
150ft NMEF 4/26-6544SJ 4Cond. 26 G. Sh. Wire Cooner Wire 270.00

10 ASTM4005 Zero Loss Connector Pairs Tower Hobbies 85.90
500ft Belden 8760 18 Gauge Pair with Shield Pacer Electronics 73.00
250ft 9445 Belden 5C. 20G. Unsh. Stranded Wire Pacer Electronics 45.00

15 FC01 Circuit Boards. 3.20 X 7.75 CFC 640.00
4 SF-BK01 Circuit Boards. 5.575 X 3.875 CFC 1100.00
4 SF-PNA01 Circuit Boards. 4.65 X 3.3 CFC 407.00
10 91590A128 .75 Ext. Ret Ring .704D .046W McMaster Carr 9.90
10 91580A238 1.625 Int Ring 1.725D .068W McMaster Carr 27.70
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Table A.4: Suppliers, Page 1 of 2.

Name Description Address Web Page
Digital Designs Microcontrollers, 3266 North Meridian Street www.dideas.com

and Systems A/D and D/A conversion, Indianapolis, IN 46208
Vision Systems, (317)931-8190

Ready Built and Custom Designs
Astroflight Electric Motors 13311 Beach Ave. www.astroflight.com

Marina Del Ray, CA 90292
(310)821-6242

Motion Systems Ball Screws 600 Industrial Way West
Corporation Eatontown, NJ 07724

(908) 222-1800
Stock Drive Mechanical Parts 2101 Jericho Turnpike,

Products Box 5416
New Hyde Park, NY 11042

(516)328-3300
Berg Mechanical Parts 499 Ocean Avenue www.wmberg.com

Box 130
East Rockaway, NY 11518

(516)596-1700
Novotechnik Linear Potentiometers 237 Cedar Hill Street www.novotechnik.com

Marlboro, MA 01752
(508)485-2244

Small Parts, Inc. Mechanical Parts 13980 NW 58th Court www.smallparts.com
PO Box 4650

Miami Lakes, FL 33014
(800)220-4242

Century Spring Springs Box 15287 www.centuryspring.com
Company 222 East 16th Street

Los Angeles, CA 90015
(800)237-5225

Newark Electronics Electronic Parts 41 Pleasant Street
Methuen, MA 01844

(800)463-9275
Industrial Sales Distributor: Epoxy, etc. 24 Grata Road

Inc. Newburyport, MA 01950
(508)851-9494

REC Engineering Machining 20 Hopkins Street
Wilmington, MA 01887

(508)657-6517
Digi-Key Electronic Parts 701 Brooks Ave. South www.digikey.com

Corporation Thief River Falls, MN 56701
(800)344-4539
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Table A.5: Suppliers, Page 2 of 2.

Name Description Address Web Page
Copley Controls Motor Amplifiers 410 University Avenue www.copleycontrols.com

Corporation Westwood, MA 02090
(617)329-8200

Cooner Wire Flexible Wire 9265 Owensmouth www.coonerwire.com
Chatsworth, CA 91311

(818)882-8311
Tower Hobbies Model Car and Airplane PO Box 9078 www.towerhobbies.com

Hobby Store Champaign, IL 61826
(800)637-6050

Pacer Electronics Electronic Parts, Wire 112 Commerce Way
Woburn, MA 01801

(617)935-8330
CFC, Inc. Circuit Board Fabrication 179 Bear Hill Road

Waltham, MA 02154-1001
(617)890-1878

McMaster Carr Mechanical Parts, Supplies Box 440 www.mcmaster.com
New Brunswick, NJ 08903

(908)329-3200
Quality Composites Carbon Fiber 8385 S Allen Street #140

Sandy, UT 84070
(801)565-8003

Sava Industries Steel Cable 4 N. Corporate Drive,
P.O. Box 30

Riverdale, NJ 07457-0030
(201)835-0882

Revolution Carbon Fiber 6335 Nancy Ridge Drive
Enterprises, Inc. San Diego, CA 92121

(619)554-1106
Champion Bearings 2233 Milo Dr.

Industries, Inc. Palm Springs, CA 92262
(619)320-0411

Industrial Aluminum Stock Aluminum 341 Second Ave.
Waltham, MA 02154

(617)890-2410
Transducer Techniques Load Cells 43178 Business Park Drive www.ttloadcells.com

Temecula, CA 92590
(909)676-3965
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Appendix B

Adaptive Control of Swing Leg

In this appendix, we derive the equations of motion of the swing leg, assuming that it is decoupled
from the rest of the robot, and use adaptive control to identify the dynamic parameters. The
equations of motion are used in Chapter 7 to control the hip during swing in order to achieve fast
walking.

B.1 Equations of Motion

Figure B-1 shows a model of the swing leg. We assume that the rest of the robot is not accelerating
and hence plays no role in the dynamics. L1 and L2 are the lengths of the upper and lower legs. b1
and b2 are the distances to the links center of mass. m1, m2, I1, and I2 are the mass and inertia
parameters. θ1 is the angle of the upper link from vertical, while θ2 is the angle of the lower link
with respect to the upper link.

The equations of motion can be computed using Lagrange’s method. The kinetic co-energy, T ∗

is

T ∗ = T ∗1 + T ∗2 (B.1)

T ∗1 =
1
2
m1v

2
1 +

1
2
I1w

2
1 (B.2)

T ∗2 =
1
2
m2v

2
2 +

1
2
I2w

2
2 (B.3)

where v1 and v2 are the velocities of the center of mass of the upper link (thigh) and lower link
(shin). w1 and w2 are the angular velocity of the links, all with respect to the fixed world reference
frame. v2

2 is computed using the law of cosines.

v2
1 = (b1θ̇1)2 (B.4)
v2

2 = (L1θ̇1)2 + (b2(θ̇1 + θ̇2))2 + 2(L1θ̇1)(b2(θ̇1 + θ̇2)) cos(θ2) (B.5)

w2
1 = θ̇1

2
(B.6)

w2
2 = (θ̇1 + θ̇2)2 (B.7)

The potential energy, V is

V = V1 + V2 (B.8)
V1 = −m1gb1 cos(θ1) (B.9)
V2 = −m2g(L1 cos(θ1) + b2 cos(θ1 + θ2)) (B.10)
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Figure B-1: Dynamic model of swing leg.

We can simplify the equations by substituting the following inertial groups:

J0 = m1b
2
1 + I1 (B.11)

J1 = m2L1b2 (B.12)
J2 = m2L

2
1 +m2b

2
2 + I2 (B.13)

J3 = m2b
2
2 + I2 (B.14)

G1 = (m1b1 +m2L1)g (B.15)
G2 = m2b2g (B.16)

J0 is the inertia of the thigh about the θ1 pivot. J3 is the inertia of the shin about θ2. J1 and J2

are the terms associated with the inertia of the shin about the θ1 pivot. G1 is associated with the
gravitational torques of both links about θ1 while G2 is associated with the gravitational torques of
the shin about θ2.

The kinetic co-energy and the gravitational potential energy can now be written as

T ∗ = (
1
2
J0 +

1
2
J2 + J1 cos(θ2))θ̇1

2
+

1
2
J3θ̇2

2
+ (J3 + J1 cos(θ2))θ̇1θ̇2 (B.17)

V = −G1 cos(θ1)−G2 cos(θ1 + θ2) (B.18)

The Lagrangian is

L = T ∗ − V (B.19)

and Lagranges equations are

d

dt

[
∂L
∂θ̇1

]
− ∂L
∂θ1

= τ1 (B.20)

d

dt

[
∂L
∂θ̇2

]
− ∂L
∂θ2

= τ2 (B.21)
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Using Lagrange’s method results in the equations of motion:
�

(J0 + J2 + 2J1 cos(θ2)) (J3 + J1 cos(θ2))
(J3 + J1 cos(θ2)) (J3)

�24 θ̈1

θ̈2

3
5 +

"
−2J1 sin(θ2)θ̇1θ̇2 − J1 sin(θ2)θ̇2

2

J1 sin(θ2)θ̇1
2

#
+

�
G1 sin(θ1) +G2 sin(θ1 + θ2)

G2 sin(θ1 + θ2)

�
=

�
τ1
τ2

�

On the real robot, we can measure the angle of the body (θb), the hip (θh), and the knee (θk)
joints. Also we wish to command the angles of the links with respect to world coordinates. Therefore
we define q1 and q2 to be the angles of the thigh and shin with respect to vertical:

q1 = θ1 = θb + θh (B.22)
q2 = θ1 + θ2 = θb + θh + θk (B.23)

(B.24)

and rewrite the equations of motion in terms of q1 and q2:

H(q)q̈ + C(q, q̇)q̇ + ~g(q) = τ (B.25)

where H is the mass matrix, C is the matrix of centrifugal and Coriolis terms, and ~g is the gravita-
tional vector:

H =
[
a1 + a2 cos(θk) a3 + a2 cos(θk)
a2 cos(θk) a3

]
(B.26)

C =
[
a2 sin(θk)q̇1 −a2 sin(θk)q̇2
a2 sin(θk)q̇1 0

]
(B.27)

~g =
[
a4 sin(q1) + a5 sin(q2)

a5 sin(q2)

]
(B.28)

where the following dynamic parameters have been substituted:

a1 = J0 + J2 − J3 = m1b
2
1 + I1 +m2L

2
1 (B.29)

a2 = J1 = m2L1b2 (B.30)
a3 = J3 = m2b

2
2 + I2 (B.31)

a4 = G1 = (m1b1 +m2L1)g (B.32)
a5 = G2 = m2b2g (B.33)

B.2 Adaptive Control

Adaptive control can now be used to identify the parameters a1 through a5. We use the approach
in [Slotine & Li (1991)]. We will track a desired trajectory, qd, using the control law

τ = τ̂ −Kds (B.34)

where τ̂ is an inverse dynamic term tracking a reference trajectory, qr, consisting of both a feed-
forward desired trajectory, qd and the integral of a feedback error, q̃. Kds is a purely feedback error
correction term and is equivalent to a PD controller:
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τ̂ = Y â = Ĥq̈r + Ĉq̇r + ĝ (B.35)
q̇r = q̇d − Λq̃ (B.36)
s = ˙̃q + Λq̃ = q̇ − q̇r (B.37)

where q̃ = q − qd. For the swing leg case, Y is:

Y =

�
q̈1r (q̈1 cos(θk) + q̈2 cos(θk) + q̇1q̇1r sin(θk)− q̇2q̇2r sin(θk)) q̈2r sin(q1) sin(q2)
0 (q̈1r cos(θk) + q̇1q̇1r sin(θk) q̈2r 0 sin(q2)

�
(B.38)

The parameters are adapted according to how much they contribute to the current dynamics
and how much they can correct for the current error:

˙̂a = −ΓY T s (B.39)
(B.40)

where Γ is a matrix of adaptation weights. To prove convergence of both the error and the dynamic
parameters, we use the following Lyapunov function

V(t) =
1
2
[
sTHs+ ãTΓ−1ã

]
(B.41)

where ã = â− a. The following simplifications

V̇ = sTHṡ+
1
2
sT Ḣs+ ˙̃a

T
Γ−1ã (B.42)

ṡ = q̈ − q̈r (B.43)

V̇ = sTHq̈ − sTHq̈r +
1
2
sT Ḣs+ ˙̃a

T
Γ−1ã (B.44)

Hq̈ = τ − Cq̇ − g (B.45)

V̇ = sT (τ −Hq̈r − Cq̇r − g) + ˙̃a
T

Γ−1ã (B.46)
V̇ = sTY ã− sTKDs+ ˙̂aΓ−1ã (B.47)
˙̂a = −ΓY T s (B.48)

(B.49)

result in

V̇ = −sTKDs ≤ 0 (B.50)

Therefore, by Barbalat’s Lemma [Slotine & Li (1991)], if the dynamic model is accurate, tracking
will be achieved and the parameters will converge. However, due to unmodeled dynamics, there
will be tracking errors. Also, since we are interested in the actual dynamic parameters, it will be
important to have sufficient excitation of the dynamics in the desired trajectory.

B.3 Results

Using the above adaptive control law, we found parameter estimates for the swing leg of the robot.
To sufficiently excite the dynamics we used a desired trajectory consisting of a large amplitude, low
frequency, sine wave and a low amplitude, high frequency, sine wave:
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Figure B-2: Swing leg tracking using adaptive control. Adaptive control is turned on at 5 seconds.

q1d = 0.8 sin(2π(0.05)t) + 0.25 sin(2π(1.0)t) (B.51)
q2d = −0.4 + q1d + 0.4 sin(2π(0.03)t) + 0.15 sin(2π(1.5)t) (B.52)

(B.53)

The control gains and adaptation gains used are the following:

KD1 = 1.0 (B.54)
KD2 = 0.7 (B.55)
λ1 = 16.0 (B.56)
λ2 = 10.0 (B.57)

Γ11 = 0.005 (B.58)
Γ22 = 0.001 (B.59)
Γ33 = 0.001 (B.60)
Γ44 = 0.30 (B.61)
Γ55 = 0.08 (B.62)

Figure B-2 shows the tracking results and Figure B-3 show the tracking errors. Adaptive control
is turned on at t = 5. We see that tracking is fairly poor when the dynamic parameters are all at
zero. When adaptation is turned on, the tracking becomes significantly better within a few seconds.
By 45 seconds, good tracking is achieved.

Figure B-4 shows adaptation of the first 3 parameters which represent the dynamic inertial terms
while Figure B-5 show adaptation of the gravitational terms. Within 45 seconds the parameters
converge, resulting in the following values
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Figure B-3: Tracking errors for adaptive control of swing leg. Adaptive control is turned on at 5
seconds.

a1 = 0.21 (B.63)
a2 = 0.11 (B.64)
a3 = 0.12 (B.65)
a4 = 4.5 (B.66)
a5 = 2.8 (B.67)

(B.68)

This experiment was repeated on the other leg, with similar results. All the parameters were within
10% of those listed above. Therefore we use these parameters for both legs in the fast walking
experiments of Chapter 7.
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Figure B-4: Dynamic parameter estimates for adaptive control of swing leg. Adaptive control is
turned on at 5 seconds.

0 5 10 15 20 25 30 35 40 45
-2

-1

0

1

2

3

4

5

a4
 e

st
im

at
e

0 5 10 15 20 25 30 35 40 45
-0.5

0

0.5

1

1.5

2

2.5

3

Time (seconds)

a5
 e

st
im

at
e

Figure B-5: Gravitational parameter estimates for adaptive control of swing leg. Adaptive control
is turned on at 5 seconds.
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